SUPPLEMENTARY MATERIALS: AC(K): ROBUST SOLUTION OF LAPLACIAN
EQUATIONS
BY RANDOMIZED APPROXIMATE CHOLESKY FACTORIZATION *

YUAN GAOT, RASMUS KYNG!, AND DANIEL A. SPIELMAN &

SM1. Linear algebra and Cholesky background. We introduce some basic notation and definitions from
linear algebra.

Laplacians and multi-graphs. For some variants of our algorithms, we will need to work with multi-graphs.
We can consider an undirected multi-graph G = (V, E') with positive multi-edge weights w : E — R, . Note that
different multi-edges between the same vertices may have different weights. In this setting, we again let n = |V]|
denote the number of vertices and we let m = |E| denote the number of multi-edges. Similar to the case of graphs
without multi-edges, we can assign arbitrary directions to multi-edges to define the Laplacian of a multi-edge e as

w(e)b.b, and define the Laplacian of G as L = YoecE w(e)beb,. . Note that different multi-graphs may have the

same Laplacian. This occurs because the coefficient of the term b(u,v)b(Tu’v) only depends on the sum o w(e)

where F,, is the set of multi-edges between vertices v and v. Thus, for example, we can take a multi-graph G and
produce another multi-graph G’ with the same Laplacian by splitting each multi-edge e of G into k copies with
weight w(e)/k each.

In Section SM2, we introduce algorithms that use multi-graphs when computing an approximate Cholesky
factorization of a Laplacian.

Upper and lower triangular matrices. We say a square matrix U is upper triangular if it has nonzero entries
U(i,j) # 0 only for i < j (i.e. above the diagonal). Similarly, we say a square matrix £ is lower triangular if it has
nonzero entries £(i,j) # 0 only for ¢ > j (i.e. below the diagonal). Often, we will work with matrices that are not
upper or lower triangular, but for which we know a permutation matrix P s.t. PUP' is upper (respectively lower)
triangular. For computational purposes, this is essentially equivalent to having an upper or lower triangular matrix,
and we will refer to such matrices as upper (or lower) triangular. The algorithms we develop for factorization will
always compute the necessary permutation.

Pseudo-inverse of a product. The following fact is useful, since we often need to apply the pseudo-inverse of a
matrix.

Fact SM1.1 (Pseudo-inverse of a product). Suppose M = ABC' is square real matriz, where A and C are
non-singular. Then

M =TI, C 'BTA~'11,,-.

LU-decomposition and Cholesky factorization of singular matrices. An LU-decomposition of a square matrix
M € R™™" is a factorization M = LU, where L is a lower-triangular matrix and U is an upper-triangular matrix,
both up to a permutation.

When the matrix M is symmetric and positive semi-definite, we get a special case of LU-decomposition, where
U=L",ie. M =LL". This is known as a Cholesky Factorization.

When M is non-singular, the linear equations Ly = b and Ux = y can be solved by forward and backward
substitution algorithms respectively (e.g. see [SM2]). These run in time O(nnz(£)) and O(nnz(l4)), that is, £
and U ~! can be applied in time proportional to the number of nonzeros in £ and U respectively. This means that
if a decomposition £,U of M is known, then linear systems in M be solved in time O(nnz(L) 4+ nnz(U)), since
Mz = b implies ¢ = U 'L71b.

When M is singular the same forward and backward substitution algorithms can be used to compute the
pseudo-inverse, in some cases. We focus on a special case where we can instead factor M as M = L'DU’, where
D is singular and £, U’ are non-singular.

*The authors are listed alphabetically. The research leading to these results has received funding from the grant “Algorithms and
complexity for high-accuracy flows and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation. It was also
supported in part by NSF Grant CCF-1562041, ONR Award N00014-16-2374, and a Simons Investigator Award to Daniel Spielman.

TCISPA, part of the work was conducted as a master’s thesis at ETH Zurich; part of this work was also conducted while the author
was at MPI for Informatics. (yuan.gao@Qcispa.de)

YETH Zurich (kyng@inf.ethz.ch)

§Yale University (spielman@cs.yale.edu)

SM1

mailto:yuan.gao@cispa.de
mailto:kyng@inf.ethz.ch
mailto:spielman@cs.yale.edu

For the case of interest to us, Laplacians of connected graphs, this slightly modified factorization can be
trivially obtained from an LU-decomposition, by setting £’ equal to £ except £(n,n) = 1 and U’ equal to U except
U(n,n) = 1 and taking D to be the identity matrix, except D(n,n) = 0. For our approximate factorizations of
Laplacians, the matrix M = £'DU’ is symmetric with U’ = (L') T, hence II,,+ = II;. Now, by Fact SMI.1,

(SM1.1) M =Ty (L) "D L™ Iy,

The kernel of M is precisely the span of the indicator vectors of each connected component of the associated graph.
Hence ITy; can be applied by, for each connected component, subtracting the mean value for that component from
every entry of the component.

Relative condition number. Given positive semi-definite matrices A and B with the same dimensions and
ker(B) C ker(A), we define the condition number of A relative to B as the ratio between the maximum and
minimum nonzero eigenvalues of ABT.

SM2. A more accurate sampling rule using multi-edge sampling. In this section, we introduce two
variants of the CLIQUETREESAMPLE sampling rule. The first variant is conceptually the simplest but performs
poorly in practice, necessitating our introduction of the second variant, which is slightly more complex but performs
much better in practice.

The first of these variants splits the original edges into multi-edges, which results in more fine-grained and
precise sampling. The second variant introduces a second important tweak, namely merging multi-edges if too
many appear between a pair of nodes.

In our experimental evaluations, we will refer to the version that splits the edges into x copies initially with
no merging as AC-sx. We refer to the version that splits the edges into = copies initially and merges multi-edges
to maintain at most y copies per edge as AC-szmy. AC(k) refers to AC-skmk, and as shown in Section SM5, this
generally seems to be a better trade-off than any setting AC-szmy with # y. AC is formally equivalent to AC(1),
but we have produced separate code optimized for this case.

Generally, AC-sz produces the most reliable factorization while AC is the fastest. AC-szmy is faster than AC-sx
at computing a factorization, often much faster, while still having significantly improved reliability compared to
AC.

Approzimate Cholesky factorization with multi-edges and edge splits. Inspired by [SM1], our first variant splits
the edges of the graph into k multi-edges, each with % of the original edge weights. Note that the resulting
multi-graph has the same Laplacian as the original graph, as the associated Laplacian only depends on the sum of
multi-edge weights between each pair of vertices.

While Algorithm 3.2 works with a Laplacian and its associated graph, our next algorithms will explicitly
maintain a multi-graph and its associated Laplacian. Because of the initial splitting of the edges and sampling
based on a larger number of multi-edges, the variants we introduce in this section are more robust and are observed
to produce better approximations of the Cholesky factorization. However, this comes at the cost of a higher number
of nonzeros in the output factorization and longer running time.

We start by introducing a new overall factorization algorithm framework, Algorithm SM2.1, which computes
a factorization of the input Laplacian by calling a sampling routine CliqueSampleMultiEdge that uses multi-edges
when sampling. We then provide two different variants of CliqueSampleMultiEdge, stated in Algorithms SM2.2
and SM2.3.

Our first multi-edge-based clique sampling algorithm is Algorithm SM2.2, which we refer to as CLIQUETREE-
SAMPLEMULTIEDGE.

SM2

Algorithm SM2.1 Algorithm APPROXIMATECHOLESKYMULTIEDGE(L) outputs a lower triangular matrix £ €
R™ "™ that gives an approximate Cholesky factorization of the input Laplacian L € R™*™,

1: procedure APPROXIMATECHOLESKYMULTIEDGE (L)

2 S + L and G < a multi-graph with L as its Laplacian.

3: > Different algorithm variants may use different rules for computing the multi-graph G given L
4 forv=1ton—1do > the order can be chosen adaptively
5 I, + \/ﬁS(:,v) > S(:,v) is the vth column of S
6: S < 8§ — STAR[S], + CliqueSampleMultiEdge(v, S, G)

7 > CliqgueSampleMultiEdge(v, S, G) updates the multi-graph G and the updated S is the associated

Laplacian.
8: return £ = (l1 Ly - 1,1 0) > The final column should be the all-zero vector.

Algorithm SM2.2 Algorithm CLIQUETREESAMPLEMULTIEDGE(v, §,) updates the multi-graph G' to eliminate
vertex v and add an approximate elimination clique with multi-edges in its place and returns C which approximates
the elimination clique CLIQUE[S], .

1: procedure CLIQUETREESAMPLEMULTIEDGE(v, S, G)

2 C «+ 0cR™™

3 Let N(G,v) be the set of vertices that neighbor v in G

4: Let E(G,v,1) be the set of multi-edges between v and ¢ in G

5: Let w(G,v,i) = 3 c g0, w(e) be the sum of weights of multi-edges between v and i in G
6 Let w(G,v) = 3 e n(g o) W(G, v, 1) be the sum of weights of multi-edges incident to v in G

7 > The quantities above are updated as G changes
8 d <+ w(G,v) is the initial weight of multi-edges incident to v

9 > d is not updated as G changes

10: for all vertices i € N(G,v) do > pick any ordering on the neighbors
11: t «+ |E(G,v,17)|

12: Wy — w(G,v,1)/t > Average of the multi-edge weights between v and 7 in G
13: Delete multi-edges E(G,v,) from G.

14: > Update values defined in Lines 3-6 correspondingly
15: Whew — Wi * w(Gw) > Weight used for samples
16: for h=1tot do _

17: Sample index j with probability p(j) = %

18: CA”(* C~”+wnew~(eifej)(eifej)T

19: Add a multi-edge between ¢ and j of weight wyey to G

20: return C

Similar to Algorithm 3.3, our Algorithm SM2.2 can also be instantiated with different orderings on the neighbors
of v, and again we choose an ordering by increasing weight w(G, v, 1).

Like our other clique sampling routines, Algorithm SM2.2 is correct in expectation, as stated in the following
claim.

CrAM SM2.1. The output of Algorithm SM2.2 satisfies

E [CLIQUETREESAMPLEMULTIEDGE(v, S, G)] = CLIQUE[S],

The proof is simple and similar to the proof in the simple graph case, and hence we omit it.

Approximate Cholesky factorization with multi-edge splits and merging. We provide a second CliqueSampleMul-
tiEdge routine which is a compromise between the previous variant and our basic version of CLIQUETREESAMPLE
(Algorithm 3.3). This variant also splits the edges into k copies of multi-edge but only keeps track of the multi-edges
up to some limit /. In other words, if there are more than [multi-edges for the same edge, this variant merges
them down to [copies. We summarize the CLIQUESAMPLE procedure of this variant as Algorithm SM2.3. This
variant yields a compromise that works well in practice, as shown by our experiments in Section 4 and Section SM5.

SM3

We believe this is because Algorithm SM2.3 allows more fine-grained sampling than Algorithm 3.3 without leading
to a build-up of large numbers of multi-edges late in the elimination as the graph gets denser. This undesirable
phenomenon can occur in Algorithm SM2.2. Algorithm 3.3 is equivalent to a special case of this variant where we
set both k£ and [to be 1, while Algorithm SM2.2 can be recovered by setting ! to be infinity.

Algorithm SM2.3 Algorithm CLIQUETREESAMPLEMULTIEDGEMERGE(, v, S,) updates the multi-graph G to
eliminate vertex v and add an approximate elimination clique with multi-edges in its place and returns C which
approximates the elimination clique CLIQUE[S], .

1: procedure CLIQUETREESAMPLEMULTIEDGEMERGE(l, v, S, G)
2: C «+—0eR¥"

3: Let N(G,v) be the set of vertices that neighbor v in G

4: Let E(G,v,1) be the set of multi-edges between v and ¢ in G

5: Let w(G,v,%) = 3 cp(q,v,) Ww(e€) be the sum of weights of multi-edges between v and i in G

6: Let w(G,v) = X ;e n(e,0) W(G, v,) be the sum of weights of multi-edges incident to v in G

T > The quantities above are updated as G changes
8: d <+ w(G,v) is the initial weight of multi-edges incident to v

9: > d is not updated as G changes
10: for all vertices i € N(G,v) do > pick any ordering on the neighbors
11: t < min(|E(G,v,1)|,1)

12: Wy — w(G,v,1)/t > Average of the multi-edge weights between v and 7 in G.
13: Delete multi-edges E(G,v,) from G

14: > Update values defined in Lines 3-6 correspondingly
15: Whew — Wyj * w(g,v) > Weight used for samples
16: for h=1tot do _

17: Sample index j with probability p(j) = ULE(GT")UJ))

18: C «— é’—i—wncw'(ei— ej)(ei—ej)—'—

19: Add a multi-edge between ¢ and j of weight wpew to G

20: return C

Note that Algorithm SM2.3 differs only from Algorithm SM2.2 by the choice of ¢ < min(|E(G,v,4)|,l) in
Line 11.

Again, the procedure is correct in expectation.

CrAamM SM2.2.

E [CLIQUETREESAMPLEMULTIEDGEMERGE((, v, S, G)] = CLIQUE[S],

The proof is simple, and essentially identical to the non-multi-edge version, so we omit it. This variant has the
advantage of producing a relatively more robust approximate Cholesky factorization, but at the same time not
creating too many nonzeros in the output factorization. Again, with a higher number of initial splits and a higher
limit for merging, this variant produces a more reliable factorization, but also has a longer runtime.

SM3. A row-operation format for Cholesky factorization output. In this section, we describe an
alternative approach to representing a Cholesky factorization. In this form, the factorization becomes a product of
row operation matrices. The two representations, either as a single lower triangular or as a product of row operation
matrices, still result in the exact same matrix, and the representations only take constant factor difference in space
consumption. Our implemented code uses this alternate row operation representation, which we have found to be
more efficient as it allows certain optimizations of space usage. With appropriate optimizations, it may be possible
to make standard representations of Cholesky factorization comparably efficient.

We can use the row-operations form in conjunction with the clique sampling introduced in the previous section,
and again we obtain a fast algorithm for approximate Cholesky factorization. The choice of row-operations form or
lower-triangular form has no impact on the sampling algorithm and does not change the output of the algorithm,
it only computes a different representation of the output.!

IThis is true in the RealRAM model, but the two forms may have different numerical stability properties in finite precision arithmetic.

SM4

It is well-known that Cholesky factorization can be interpreted as a sequence of row and column operations.
We can use this interpretation to write the lower-triangular matrix £ of a Cholesky factorization ££ 7 as a product
of matrices that perform a row operation.

A less appreciated fact, however, is that we have some flexibility when choosing the scaling of the row operation.
We introduce a particular choice of scaling with an interesting property: When we apply a row operation to a
Laplacian matrix, as an intermediate step in eliminating column v, we remove the entry of row ¢ corresponding
to the edge from v to 7 and in the process we create new entries that correspond exactly to the elimination star
defined in Equation (3.3).

This motivates our decomposition of the elimination clique from Equation (3.2) into elimination stars.

We assume we are dealing with a connected graph, and describe a row-operation representation of partial
Cholesky factorization when it is used to eliminate a single vertex. We can eliminate multiple vertices by repeated

application.
We let
d —w —a'
L=| —w [(w o’
—a (0 diag(a)) + Lo
Degree-1 elimination. When eliminating a vertex of degree 1, i.e. when a = 0, we use the following factorization.
w 0 0F 1 0 0f wo—w o' 1 1 07
0 = 1 —w [(w 0T 0
o = o I 0 <0 0>+L—1 o I
And hence, by applying inverses of the outer matrices in the factorization,
w o —w o' 1 0 0" w 0 0F 1 -1 o'
—w (w 07 = -1 0 0
0 (0 0) + L_4 0 I 0 L_, 0 I

Edge elimination. When the vertex we’re in the process of eliminating has degree more than 1, we instead
apply the following factorization, where d = 1Ta + w and 6 = w/d.

d1-92% 0 —(1—0)a’
(SM3.1) 0 w—w?/d —%a
—(1—-10)a —Y%a dlag(a,) I
1-0 0 of —w 1-0 6 of
= 0 —w (w or 0
o 1 —a <0 diag(a))+L_l o 1

Note that the matrix on the LHS is a Laplacian because d(1 — 6)? = (1 —)17 a. And again, by applying inverses
of the outer matrices in the factorization, we have

d —w ; —a’

:1: (1(1)} die?g(a)) + Lo
B i 0 o' d(1 8 6)? ow) w2/d—(1—;2)TaT %0 =% of
- 1(_){9 I —(1-0)a (—Ya diadg(a)) I 0 I

Schur complement invariance. We can also see that the Schur complement onto the remaining vertices is

d —w —a'
_ _ T
S = Sc _w (1(1)1 d.0())+L1
a lagla mI\{1}

w—w?/d —LqT
(—“a diag() é)+L_1

SM5

d1-6)2 0 —(1—60)a’
= Sc 0 —w?/d —%aT
~(1-0)a <w _;Ua,/ diad((za)> Lo
d & \{1}
Eliminating a vertex, one edge at a time. Let us summarize these observations into a statement about how to
write a factorization of L that eliminates the first vertex, which we will now denote by vertexr 0. Assume vertex 0
has degree k, and that its neighbors are vertices 1,2,..., k.

d Al
(SM3.2) L= (_a diag(a;er L)

We denote the weight on the edges from vertex 0 to its neighbors by a(1),a(2),...,a(k). We then write

¢ 0F

(SM3.3) LL’1£2...L'k(0 s

)L,I...LQTLI

where § = SC[L]|,,}\ (1}, and where for i <k, we have

1 T
i O 0;
Li = (7161‘0162' I > =TI+ 1_ 97;(61 — ei)elT

1-6;
where e; is the 7 basis vector in dimension n— 1, and 6; = 'Zl(gi]?’l(igig) = d~Hj:i(8— R We can simplify this, using
. -3 . . a(j
the observation that IT;«,(1 — 6;) = M Hence

a(i)

bi= d— Zj<7,’ a,(j)'

The last factor is given by,

1 o'
Lk:(—ek I>:I—eielT
and ¢ = a(k)TTj (1 — 0;) = 2B

Computing an edgewise Cholesky factorization. In this section, we briefly remark how to repeatedly eliminate
vertices to obtain a full edgewise Cholesky factorization.

Let us slightly modify the notation for the first elimination to write

-
IL— £§1)£é1)._.£l(€11) (%1 OS) (ﬁl(cll))'l'_..(Eél))‘l'(cgl))'r7

where k1 denotes the degree of the vertex we eliminated, and S = Sc[L])\ {1}-
Now if we recursively factor the remaining matrix S we can eventually write

(SM3.4) L= () @ (HyzlaniL§i>>T .

Note that j ~ i denotes the set of j that are neighbors of ¢ in the Schur complement that 7 is being eliminated from.
® is a diagonal matrix with ®(4,4) being the diagonal entry that results from the final single-edge elimination of

vertex i. Each row operation matrix L;z) only has two entries where it differs from the identity matrix. Hence Lg’)x
can be computed from z in O(1) time by only modifying a constant number of entries of z. Similarly, the inverse
of these row operation matrices can be applied in O(1).

We summarize edgewise Cholesky factorization in the pseudo-code below. The output is a diagonal matrix ®

and a sequence of row-operation matrices {EZ(-U)} , which gives an edgewise Cholesky factorization of a Laplacian
v,

in the sense of Equation (SM3.4).

SM6

Algorithm SM3.1 Algorithm EDGEWISECHOLESKY (L) outputs an edgewise Cholesky factorization of the input
Laplacian L € R™*™.

1: procedure EDGEWISECHOLESKY (L)

2 P~ 0

3 S+« L

4 forv=1ton—1do > Eliminate any n — 1 vertices in any order.
5: d <+ S(v,v); a <+ —8(v,:); a(v) <0

6 for i € {nbrs. of v}, excluding one nbr. denoted by index k, do

7 0; f%)z > The neighbor eliminations can
8 El(-v) — I+ 1%_ (e, —e;)e) > be performed in any order.
9 a(i) <0 '

10: LZS? —I+epel

11: ®(v,v) “(kT“)Z

12: S < 8§ — STAR[S], + CLIQUE[S],

13: return @, {£§v)}

v,1

Obtaining an algorithm for edgewise Approximate Cholesky factorization. In Section 3.1, we saw a meta-
algorithm APPROXIMATECHOLESKY (Algorithm 3.2), which shows how we can replace the elimination clique in
standard to Cholesky factorization (CHOLESKY, Algorithm 3.1) with a sampled clique approximation to obtain an
approximate Cholesky factorization. And we introduced a new approach to clique sampling, CLIQUETREESAMPLE
(Algorithm 3.3), which we can plug into the APPROXIMATECHOLESKY meta-algorithm.

Similarly, if we replace the elimination clique in the edgewise Cholesky factorization of the previous section,
then we immediately get an approximate edgewise Cholesky factorization. We frame this as a meta-algorithm,
using an arbitrary multi-edge clique sampling routine, which we refer to as CliqueSampleMultiEdge.

The algorithm appears below as Algorithm SM3.2.

Algorithm SM3.2 Algorithm APPROXIMATEEDGEWISECHOLESKY (L) outputs an approximate edgewise Cholesky
, T
factorization @, {LEU)} such that (H?:lnj,\,iﬁ;l)) > (H?:lﬂjwﬁy)) ~ L.

v,

1: procedure APPROXIMATEEDGEWISECHOLESKY (L)

2 P~ 0

3 S+ L

4 forv=1ton—1do > Eliminate any n — 1 vertices in any order.
5: d <+ S(v,v); a <+ —8(v,:); a(v) <0

6 for i € {nbrs. of v}, excluding one nbr. denoted by index k, do

7 0; f%)z > The neighbor eliminations can
8 El(-v) — I+ %(ev —e;)e, > be performed in any order.
9 a(i) <0 '

10: LIS? —I+epel

11: ®(v,v) “(kT“)Z

12: S < 8§ — STAR[S], + CliqueSampleMultiEdge(v, S)

13: return P, {£§v)}

v,1

The outputs of APPROXIMATEEDGEWISECHOLESKY and APPROXIMATECHOLESKY are identical when viewed
as linear operators. We prove this claim formally below.

CrAIM SM3.1. Suppose we run APPROXIMATECHOLESKY and APPROXIMATEEDGEWISECHOLESKY
using the same elimination ordering, and using CLIQUETREESAMPLE as the clique sampling routine, and using
the same outputs of CLIQUETREESAMPLE, i.e. the same outcomes of the random samples. Then the output

SM7

factorizations £ from APPROXIMATECHOLESKY and ®, {L‘,Z(.”)} ~ from APPROXIMATEEDGEWISECHOLESKY will
K3

satisfy 7
T _(rm o ,® O
LL = (G I L7) @ (TG I L .
In other words, the only difference between the two algorithms is in the formatting of the output.
We prove the claim in Appendix SM3.1.

REMARK SM3.2. The claim above shows the algorithms differ only in the formatting of their outputs. In fact,
we can also convert the output of either to the output of the other in linear time.

From this, we can also deduce that
(#) @\ "
E [(H?Zlﬂjw,;ﬁjl) i (H?:lﬂjwiﬁj’) } = L.

Furthermore, we can see by inspection that Claim 3.2 essentially applies: Each row operation £§z) consists of
an identity matrix with two entries adjusted, one on the diagonal, and one below the diagonal. This means the
matrix and its inverse can be applied in O(1) time, and the overall sequence of row operations (or their inverses)
can be applied in O(mlogm) time when the input matrix has O(m) nonzero entries.

SM3.1. Equivalence of the output representations. In this section, we prove Claim SM3.1, about the
equivalence of edgewise and standard Cholesky factorization.

Proof. We can write a Laplacian L with terms corresponding to edges of the first vertex explicitly separated
out as:

d —a'
(SM3.5) L= < —a diag(a) + L_;)

Here L_; is the graph Laplacian corresponding to the induced subgraph on the vertex set with vertex 1 removed.
From Section 3.1, we know that it is possible to write

(SM3.6) L= (8 0;> *% (—da> (—da)T

Where S = SC[L}[TL]\{l}'
If vertex 1 has k neighbors, then using the elimination procedure described in Section SM3 to eliminate the
first row and column of the matrix will result in a partial factorization. Thus,

¢ 0"

(SM3.7) L:clq...ck(o s

)cg...cgd

where each E;r is a lower-triangular matrix corresponding to a single row-operation.
We can prove the following:

0 of 0 o'
(SM3.8) <o S)—£1£2"'Lk< 0 S)ﬁﬂ--ﬁgﬁf
and
1(d\[d\" 0"
(SM3.9) : (_a> (_a> _ L',l[,g---[,k(o0)c;-.-cgd.

To establish Equation (SM3.8), we observe that each row operation factor takes the form

. T
et
| T-)x(n-1)

SM8

xXd

for some vector b; € R™. But, given any vector b; € R" and any matrix C € R X4 with any number of

columns d, we have
< - . -) (T) (T)
‘ 1 (n—1)x(n—1) C C ’

Repeatedly applying this observation the right hand side of Equation (SM3.8) lets us conclude that it equals the
left hand side, proving the equation holds.

Now, by equating the two right hand sides of Equation (SM3.6) and Equation (SM3.3), and simplifying using
Equation (SM3.8), we conclude that Equation (SM3.9) holds.

The proof of Equation (SM3.9) only relies on the row operation matrices having the form

ol 10
| Ta-1)x(n-1)

for some b; and does not require S to be a Schur complement.
Consequently, it holds for any S matrix that

0 of 0 of
(SM3.10) (0 g):clcg---ck< 0 §)c,j--.cgcf
and hence
0 0"\ 1/4d d\" o7
(SM3.11) (0 §)+d<_a> (_a) :clcg.-.z:k<f; g)c[.-.cgcf. u|

Thus, by taking § = L_; + CLIQUETREESAMPLE(v, S), we can conclude that the partial factorizations
computed in one step of APPROXIMATECHOLESKY(L) and EDGEWISEAPPROXIMATECHOLESKY(L) are identi-
cal. We can apply this equivalence repeatedly to conclude that the two approximate factorizations returned by
APPROXIMATECHOLESKY(L) and EDGEWISEAPPROXIMATECHOLESKY(L) are identical, assuming we (a) use the
same elimination ordering for both, and (b) use CLIQUETREESAMPLE as the clique sampling routine, and using
the same outputs of CLIQUETREESAMPLE, i.e. the same outcomes of the random samples. Thus the approximate
factorizations returned by APPROXIMATECHOLESKY(L) and EDGEWISEAPPROXIMATECHOLESKY(L) are identical
when regarded as operators.

SM4. Unbiased Approximate Cholesky factorization. In this section, we prove Claim 3.1, which was
first shown in [SM1].? We first restate the claim:

CrAamm SM4.1. When APPROXIMATECHOLESKY is run with an unbiased clique sampling routine CLIQUE-
SAMPLE so that
E [CLIQUESAMPLE(v, §)] = CLIQUE[S],, .

Then letting L = APPROXIMATECHOLESKY (L), we have
ElecT| =L

In other words, the approximate Cholesky factorization equals the original matrix in expectation, which is in turn
also equal, viewed as a linear operator, to any exact Cholesky factorization.

Proof. Let S; denote S in Algorithm 3.2 after i eliminations, and note that Sy = L. Let

L,=8;,+ Z ljl;r
J=1

Suppose the ith vertex to be eliminated is vertex v. Conditional on the samples before the ith elimination, we
have

i
T
E[L]=E |8+ 1l
Jj=1
2See also Lemma 4.1 in lecture notes at http://kyng.inf.ethz.ch/courses/AGAO20/lectures/lecture9_apxgauss.pdf.

SM9

http://kyng.inf.ethz.ch/courses/AGAO20/lectures/lecture9_apxgauss.pdf

=E |S;—1 — STAR[S;_1], + CLIQUESAMPLE(v, §;_1) + Z ljle
j=1

= S,_1 — STAR[S;_1], + E [CLIQUESAMPLE(v, S;_1)] + Z ljle

Jj=1

=8,_1— STAR[Si_ﬂU + CLIQUE[Si_l}U + Z l]l;r

j=1

i—1
=S+ Ll
j=1
=L;_;.
We can now chain together expectations to conclude that over all the randomness of the algorithm

E [LH} —E[L,] = L. .

SM5. Fill-in, splitting, and merging, and preconditioner quality: experiments on further variants.

In this section, we report some further experimental statistics on the qualities of all variants of the approximate
Cholesky factorization on the difficult problems described earlier. The Approximate Cholesky factorizations reported
here are

e AC: no splitting, and merging of multi-edges down to 1 copy.

e AC-sl: no splitting and no merging.

o AC-s2: original edges split into 2 copies, no merging.

e AC-s2m2, aka. AC(2): original edges split into 2, merging multi-edges down to 2 copies.

e AC-s3m3, aka. AC(3): original edges split into 2, merging multi-edges down to 2 copies.
For these factorizations, we report the following statistics:

e Total time to solve each linear equation, normalized by nonzero count.

e Condition number of the SDDM matrix and the approximate factorizations. This captures the quality of

approximate factorizations.

e Ratio between the size of the output factorization and the input Laplacian (adjacency) matrix.
Results are shown in Table SM5.1. Here we remark that AC and AC-s1 did not achieve the target 10~ tolerance on
the Sachdeva star when k = 700. For Sachdeva stars, most sampled edges of our solvers occur within the complete
graphs on the leaves, hence causing the ratio between the sizes of output factorizations and input Sachdeva star
Laplacians to be close to 1. We see that the initial splitting plays a very significant role in the quality of the
output factorization. AC-s1 produced factorizations that have very large condition numbers relative to the input
matrix on Sachdeva star, even though it does not compress any multi-edges created during the elimination. On
the other hand, the condition number and iteration counts for AC-s2m2 are still very much comparable to that of
AC-s2, despite that it only keeps up to 2 multi-edges. This suggests that allowing no limits on multi-edges does
not increase quality much compared to versions that merge, and versions without merging are noticeably slower.
AC-s3m3 produced the most reliable factorizations and beats AC-s2 in terms of the runtime, but is not as fast as
AC-s2m2.

SM10

TTINS

Table SM5.1: Comparison between variants of the approximate Cholesky factorization using different multi-edge splitting and merging approaches.

Instance nonzeros AC AC-sl AC-s2
nnz tiotal/ MNZ Niger fill-in Condition num. tiotal/ Mz Niger filllin Condition num. tiotal/ Nz Nigey fill-in - Condition num.
(M) s s 1S
Weighted chimera 54.6 2.88 26 2.5 14.1 4.72 24 3.06 11.7 8.68 19 4.19 7.61
Weighted SDDM chimera 54.2 3.05 24 2.42 11.3 4.3 24 2.79 12.2 7.1 18 3.76 6.62
Sachdeva Star 172 22" 408 1.0 9660.0 3.13" 189 1.0 3090.0 5.97 31 1.0 102.0
High contrast coefficient Poisson grid 200 2.24 60 2.54 80.2 3.82 53 3.11 54.7 6.32 44 4.33 35.8
Anisotropic coef. Poisson grid, variable weight 200 2.73 39 243 27.2 3.24 32 2.9 16.7 5.73 23 3.95 9.14
Instance nonzeros AC-s2m2 AC-s3m3
nnz tiota)/ M0z Nigey fill-in Condition num. tiotal/ 0z Nigey fill-in Condition num.
(M) s (ps)
Weighted chimera 54.6 3.9 19 3.45 7.81 5.13 17 4.2 6.15
Weighted SDDM chimera 54.2 4.26 19 3.27 8.18 5.39 17 3.94 5.83
Sachdeva Star 172 0.84 44 1.0 64.6 1.15 31 1.0 21.4
High contrast coefficient Poisson grid 200 3.44 45 3.57 40.6 4.4 38 4.39 35.5
Anisotropic coef. Poisson grid, variable weight 200 2.33 26 3.33 11.5 3.12 21 3.99 8.15

SM6. Interior Point Method equations on Spielman graphs. In this appendix, we report the results of
additional experiments on solving Laplacian linear equations that arise from taking Interior Point Method (IPM)
Newton step in when using an IPM to solve maximum flow. In these additional experiments, we test a family of
graphs called Spielman graphs. These are conjectured to be a hard instance for short-step Maximum Flow IPMs.
That is, it is thought that short-step IPMs need many Newton steps to converge on graphs. Spielman graphs are
built recursively across a number of levels. There is a unique Spielman graph with k levels, and it has O(k3) vertices
and edges. This family has a high degree of symmetry, which allows an algorithm based on implicit representations
(which we call R-space representation) of the flow solution to compute intermediate states of the IPM very quickly.
We use this to speed up our experiments, by only employing a Laplacian solver at a few points spaced evenly
throughout a run of the IPM, and using R-space representation for majority of the Newton steps. We run the IPM
up to precision 1076, For each number of levels k = 100, 200, 300, 400, 500,600 (or in terms of number of edges of
the Spielman graphs: from roughly a million up to 200 million), we take roughly 10 Laplacians that occur when
running Maximum Flow IPM. The Laplacians are distributed evenly across precision ranges including the first and
the final Laplacians during each run of the IPM. Table SM6.1 reports the details of the performances of the solvers
on Laplacians from running our Maximum Flow IPM on Spielman graphs. The results of this experiment are shown
in Table SM6.1.

SM12

€TINS

Table SM6.1: Maximum Flow IPM Laplacians from Spielman graphs.

edges # instances AC tiota1/ N0z AC(2) tiota/ nnz CMG tota1/ N0z
n median 0.75 max median 0.75 max median 0.75 max
(K) (1) (ns) — (ps) (1s) (ns) — (ps) (1s) (ns) — (ps)
1030 10 0.162 0.172 0.247 0.28 0.287 0.313 1.81 1.84 1.93
8100 10 0.194 0.195 0.223 0.296 0.305 0.369 1.95 1.97 2.02
2.72 x 10% 10 0.229 0.25 0.286 0.346 0.354 0.389 2.24 2.25 2.29
6.44 x 10* 10 0.247 0.268 0.291 0.357 0.367 0.396 2.43 2.46 2.71
1.26 x 10° 10 0.264 0.279 0.362 0.422 0.428 0.428 2.56 2.57 3.06
2.17 x 10° 11 0.418 0.437 0.735 0.502 0.51 0.809 2.63 2.68 3.28
edges # instances Hypre tiota)/ nnz PETSc tiota/ N0z ICCG tiota1/ nnz IC(2)CG tyota)/ N0z
n median 0.75 max median 0.75 max median 0.75 max median 0.75 max
(K) (1s) (ns) — (us) (1) (us) (us) | (us) (ns) — (ps) (1s) (1s) — (ps)
1030 10 0.346 0.361 0.449 0.76 1.06 181 3.82 3.9 4.08 5.93 6.73 6.98
8100 10 0.454 048 1.22 1.22 1.85 3327 914 104 " 105 7| 11.8 12.8 13
2.72 x 104 10 0.533 0.551 0.621 1.84 247 261 10.9 16.9 © 20.1 *| 13 171 20.2
6.44 x 10* 10 0.583 0.62 0.725 1.68 2.05 3.27 14 146 7 152 7| 144 182 28
1.26 x 10° 10 0.633 0.665 0.768 2.38 2.6 3.24 93 11 * 1927 16.5 172 215
2.17 x 10° 11 0.643 0.693 0.811 2.31 2.82 3.98 13 7 1627 221 7| 211 22.6 27.4

REFERENCES

[SM1] R. KYNG AND S. SACHDEVA, Approzimate gaussian elimination for laplacians-fast, sparse, and simple, in 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 2016, pp. 573-582.
[SM2] L. N. TREFETHEN AND D. Bau III, Numerical Linear Algebra, vol. 50, Siam, 1997.

SM14

	Linear algebra and Cholesky background
	A more accurate sampling rule using multi-edge sampling
	A row-operation format for Cholesky factorization output
	Equivalence of the output representations

	Unbiased Approximate Cholesky factorization
	Fill-in, splitting, and merging, and preconditioner quality: experiments on further variants
	Interior Point Method equations on Spielman graphs
	References

