Two-Commodity Flow is as Hard as Linear Programming

Ming Ding Rasmus Kyng
ming.ding@inf.ethz.ch kyng@inf.ethz.ch
Department of Computer Science Department of Computer Science
ETH Zurich ETH Zurich
Peng Zhang

peng.zhang@yale.edu
Department of Computer Science
Yale University

July 21, 2021

Abstract

We give a nearly-linear time reduction that encodes any linear program as a 2-commodity
flow problem with only a polylogarithmic blow-up in size. Our reduction applies to high-
accuracy approximation algorithms and exact algorithms. Given an approximate solution to
the 2-commodity flow problem, we can extract a solution to the linear program in linear time
with only a polynomial factor increase in the error. This implies that any algorithm that solves
the 2-commodity flow problem can solve linear programs in essentially the same time. Given a
directed graph with edge capacities and two source-sink pairs, the goal of the 2-commodity flow
problem is to maximize the sum of the flows routed between the two source-sink pairs subject to
edge capacities and flow conservation. A 2-commodity flow problem can be formulated as a linear
program, which can be solved to high accuracy in almost the current matrix multiplication time
(Cohen-Lee-Song JACM’21). In this paper, we show that linear programs can be approximately
solved, to high accuracy, using 2-commodity flow as well. As a corollary, if a 2-commodity flow
problem can be approximately solved in time O(|E|¢polylog(U |E|e™1)), where E is the graph
edge set, U is the ratio of maximum to minimum edge capacity, € is the multiplicative error
parameter, and c is a constant greater than or equal to 1, then a linear program with integer
coefficients and feasible set radius r can be approximately solved in time O(N€ polylog((r +
1)Xe 1)), where N is the number of nonzeros and X is the largest magnitude of the coefficients.
Thus a solver for 2-commodity flow with running time exponent ¢ < w, where w < 2.37286 is
the matrix multiplication constant, would improve the running time for solving sparse linear
programs.

Our proof follows the outline of Itai’s polynomial-time reduction of a linear program to a
2-commodity flow problem (JACM’78). Itai’s reduction shows that exactly solving 2-commodity
flow and exactly solving linear programming are polynomial-time equivalent. We improve Itai’s
reduction to preserve the sparsity of all the intermediate steps. In addition, we establish an
error bound for approximately solving each intermediate problem in the reduction, and show
that the accumulated error is polynomially bounded. We remark that our reduction does not
run in strongly polynomial time and that it is open whether 2-commodity flow and linear
programming are equivalent in strongly polynomial time.

1 Introduction

In this paper, we consider the very well-studied multi-commodity maximum flow problem. Many
variants of multi-commodity flow problems exist. We consider one of the simplest directed variants,
2-commodity maximum through-put flow. Given a directed graph with edge capacities and two
source-sink pairs, this problem requires us to maximize the sum of the flows routed between the
two source-sink pairs, while satisfying capacity constraints and flow conservation at the remaining
nodes. In the rest of the paper, we will simply refer to this as the 2-commodity flow problem. We
abbreviate this problem as 2CF. Our goal is to relate the hardness of solving 2CF to that of solving
linear programs (LPs). 2-commodity flow is easily expressed as a linear program, so it is clearly
no harder than solving LPs. We show that the 2-commodity flow problem can encode a linear
program with only a polylogarithmic blow-up in size. Our reduction runs in nearly-linear time.
Given an approximate solution to the 2-commodity flow problem, we can recover, in linear time,
an approximate solution to the linear program with only a polynomial factor increase in the error.
This also implies that an exact solution to the flow problem yields an exact solution to the linear
program.

Multi-commodity flow problems are extremely well-studied and have been the subject of numer-
ous surveys [Ken78; |AMO93; OMV00; BKV09; Wan18|, in part because a large number of problems
can be expressed as variants of multi-commodity flow. Our result shows that this is no accident -
general linear programs can be expressed this way. Early in the study of these problems, before
a polynomial-time algorithm for linear programming was known, it was shown that the undirected
2-commodity flow problem can be solved in polynomial time [Hu63|. In fact, it can be reduced to
two undirected single commodity maximum flow problems. In contrast, directed 2-commodity flow
problems were seemingly harder, despite the discovery of non-trivial algorithms for some special
cases |[Eva76; Eva7s].

Alon Ttai [Ita78] proved a polynomial-time reduction from linear programming to 2-commodity
flow, before a polynomial-time algorithm for linear programming was known. For decades, the only
major progress on solving multi-commodity flow came from improvements to general linear program
solvers [Kha80; Kar84; Ren88; [Vai89]. Then, Leighton et al. [Lei+95] showed that undirected
capacitated k-commodity flow in a graph with m edges and n vertices can be approximately solved
in a(kzmn), albeit with a poor dependence on € when completely routing all demands with 1 4 €
congestion of the edges. This beats solve-times for linear programming in sparse graphs for small k,
even with today’s LP solvers that run in current matrix multiplication time, albeit with much worse
error. This spurred a number of follow-up works with improvements for low-accuracy algorithms
IGKO7; [Fle00; [Mad10]. Later, breakthroughs in achieving almost- and nearly-linear time algorithms
for undirected single-commodity maximum flow also lead to faster algorithms for undirected k-
commodity flow [Kel+14; [Shel3; |[Penl6], culminating in Sherman’s introduction of area-convexity
to build a O(mke~!) time algorithm for approximate undirected k-commodity flow |[Shel7].

Undirected multi-commodity flow has played a central role in approximation algorithms for
NP-hard problems. It was core to the result of Leighton and Rao [LR89; LR99]| which gave a break-
through O(logn)-approximation algorithm for sparsest cut and gave approximation algorithms for
a host of other NP-complete problems. Building on this development, [Kle+90] showed that a
related general concurrent flow problem can be used to approximately solve an even wider array
of NP-complete problems, and more results in this vein have followed e.g. [LRS98|. An important
development in the research on undirected multi-commodity flow for approximation algorithms was
the characterization of the multi-commodity flow-cut gap [LR89; LR99; |AR9S8; LLR9I5; CSW10|, as
well as the relationship of this phenomenon to graph metric embeddings |[Gup+04]. Understanding
of the undirected multi-commodity flow-cut gap has in turn played an important role in the devel-

opment of fast graph algorithms including algorithms for single commodity undirected maximum
flow [Kel4-14].

In contrast, the flow-cut gap for directed variants of multi-commodity flow and approximation
algorithms for directed multi-cut are not as well-understood, but the directed multi-commodity
flow-cut gap is known to be polynomial in contrast to the logarithmic gap of the undirected case
[CK09; AACOT; (CM16; [SSS19].

Single commodity flow problems have been an area of tremendous success for the development
of graph algorithms, with an era of algorithms deeply influenced by early results on maximum
flow and minimum cut [FF56] and later the development of powerful combinatorial algorithms
for maximum flow [Din70; ET75; GR98] with polynomially bounded edge capacities. Later, a
breakthrough result on nearly-linear time for electrical flows by Spielman and Teng [ST04] lead
to the Laplacian paradigm. A long line of work explored direct improvements and simplifications
of this result [KMP10; KMP11; [Kel4+13; PS14; [KS16; |JS21]. This also motivated a new line
of research on undirected maximum flow [Chr+11}; |[LRS13} |[Kel+14} Shel3|, which in turn lead to
faster algorithms for directed maximum flow and minimum cost flow [Mad13; Mad16; [L.S20; [KL.S20;
van+21; GLP21| building on powerful tools using mixed-/s, £,-norm minimizing flows [Kyn+19] and
inverse-maintenance ideas [Che+20]. Certain developments are particularly relevant to our result:
For a graph G = (V, F) these works established high-accuracy algorithms with O(|E|) running time
for computing electrical flow [ST04] and O(|E |*/3) running time for unit capacity directed maximum
flow [Mad13; KLS20], and O(min(|E[**7,|E| + |[V|*%)) running time for directed maximum flow
with general capacities [GLP21} van+21].

The many successes in developing high-accuracy algorithms for single-commodity flow problems
highlight an important open question: Can multi-commodity flow be solved to high accuracy faster
than general linear programs? Maximum flow in a sparse graph with |E| = O(|V]) edges (and
polynomially bounded capacities) can be solved in time O(]V|14%7); thus one could hope to solve
sparse multi-commodity flow problems in time faster than the 5(|V|2‘372'“) running time provided
by LP solvers that run in current matrix multiplication time [CLS21]. However, our result shows
that any improvement for sparse multi-commodity flow to high accuracy would directly translate to
a faster algorithm for solving sparse linear programs to high accuracy, with only a polylogarithmic
increase in running time.

Previous work by Kyng and Zhang [KZ20] had shown that fast algorithms for multi-commodity
flow were unlikely to arise from combining interior point methods with special-purpose linear equa-
tion solvers. Concretely, they showed that the linear equations that arise in interior point methods
for multi-commodity flow are as hard to solve as arbitrary linear equations. This ruled out algo-
rithms following the pattern of the known fast algorithms for high-accuracy single-commodity flow
problems. However, it left open the broader question that if some other family of algorithms could
succeed. We now show that in general, a separation between multi-commodity flow and linear
programming is not possible.

1.1 Previous works

Our paper follows the proof by Itai [[ta78| that linear programming is polynomial-time reducible
to 2-commodity flow. However, it is also inspired by recent works on hardness for structured linear
equations [KZ20] and packing/covering LPs [KWZ20|, which focused on obtaining nearly-linear
time reductions in somewhat related settings. These works in turn were motivated by the last
decade’s substantial progress on fine-grained complexity for a range of polynomial time solvable
problems, e.g. see [WW18|. Also notable is the result by Musco et al. [Mus+19] on hardness for
matrix spectrum approximation.

1.2 Owur contributions

In this paper, we explore the hardness of 2-commodity maximum throughput flow, which for brevity
we refer to as the 2-commodity flow problem or 2CF. We relate the difficulty of this problem to
that of linear programming (LP). We develop a nearly-linear time, sparsity-preserving polynomial
reduction from LP to 2CF, and we show that given an approximate 2CF solution, we can obtain
an approximate LP solution with only polynomially larger error. More precisely, given an LP with
N nonzero integer coefficients in the range [—X, X] and polytope radius of R in ¢; norm, we can
obtain a 2CF with |E| = O(Nlog X) edges and integer capacities on the order O(N3RX?%01) in
time O(N log X). And if we want to solve an LP within error €, then we can reduce it to solving
a 2CF within Q (W) multiplicative error in congestion. This means that if 2CF can be
solved within e error in time O (|E|° - polylog(1/e€)), then LP can be solved within € error in time
O (NC - poly log (NRX)).

€
We obtain our result by making several improvements to Itai’s reduction from LP to 2CF. First
of all, while Itai produced a 2CF with the number of edges in the order O (N2 log? X), we show that

an improved gadget can reduce this to O (N log X), so that the problem sparsity can be preserved.
Itai used very large graph edge capacities that require O ((N log X)1'01) many bits per edge, as

the capacities grew exponentially given an LP with polynomially bounded entries. We show that
by making a natural assumption on the LP, namely that all feasible solutions have ¢; norm at
most R for some R > 0, we can ensure that capacities remain a polynomial function of the initial
parameters N, R, and X. Hence each capacity can be represented using log(/N) bits, assuming the
parameters X and R are bounded by poly(N). In fact, if there exists a feasible solution x satisfying
|lz]l; < R, then we can add a constraint ||z||; < R to the LPF_-I so that in the new LP, all feasible
solutions have ¢; norm at most R. This only increases the number of nonzeros in the LP by at
most a constant factor. It is common in LP solvers to consider polytopes with such a bounded
radius R, |Ren88; (CLS21].

Crucially, while Itai analyzed the chain of reductions under the case with exact solutions, we
generalize the analysis to the case with approximate solutions by establishing an error analysis
along the chain. We show that the error only grows polynomially during the reduction. More
precisely, if a 2CF can be solved within € error in congestion, then the LP can be solved within error
O(N1OR3X70l¢), Moreover, to simplify our error analysis, we observe that additional structures
can be established in many of Itai’s reductions. For instance, we propose the notion of a fixed flow
network, which consists of a subset of edges with equal lower and upper bound of capacity. It is
a simplification of Itai’s (I, u) network with general capacity (both lower and upper bounds on the
amount of flow).

We remark that while we have carried out our error analysis assuming a 2CF solver with
multiplicative error in congestion (or equivalently error in demand at the source and sink nodes),
we believe that it should be straightforward to extend our analysis to 2CF solvers with additive
error in demand at all nodes while still retaining polynomial blow-up in error.

1.3 Organization of the remaining paper

In Section [2| we give some general notations and problem definitions. These definitions include
those problems that are involved in the reduction from LP to 2CF. In Section |3, we state our main
theorem, and overview the proof that reduces an LP instance to a 2CF instance by a chain of
efficient reductions. In Section [4] we provide proof details for all the steps along the chain. In each
step, we describe a (nearly-)linear-time method of reducing a problem A to a problem B, and a

'Wlog, we can assume z > 0. Then, ||z||, = >, z(4) is linear.

linear-time method of mapping a solution of B to a solution of A. More importantly, we prove that
the size of B is nearly linear in that of A, and an approximate solution to B can be mapped back
to an approximate solution to A with a polynomial blow-up in error parameters. In Section [5] we
prove the main theorem by putting all intermediate steps together.

2 Preliminaries

2.1 Notation

Matrices and vectors We use parentheses to denote entries of a matrix or a vector: Let A(i, j)
denote the (7, j)th entry of a matrix A, and let (i) denote the ith entry of a vector x. Given
a matrix A € R™*™ we use a; to denote the ith row of a matrix A and nnz(A) to denote the
number of nonzero entries of A. Without loss of generality, we assume that nnz(A) > max{m,n}.
For any vector ¢ € R", we define ||@|],,,, = max;ci) [(i)], @], = > ;¢ [2(2)]. For any matrix

A € R™*" we define || A|| = max; ; |A(i, j)|.

max
We define a function X that takes an arbitrary number of matrices Aq,..., Ay, vectors
bi,...,by,, and scalars K1,..., Kj, as arguments, and returns the maximum of |-||,,,.,. of all the
arguments, i.e.,
X(Ala--~7Ak17b17---;bk2;K17---;Kk3)
= max { | A1 o - Ak e o 101 e s+ 100 e » 1L [Ky [-

2.2 Problem Definitions

In this section, we formally define approximately solving a linear program and approximately solving
a 2-commodity flow problem. In addition, we formally define the problems that we use in the
reduction. These problems fall into two categories: one category is related to linear programming
and linear equations, and the other is related to flow problems in graphs.

2.2.1 Linear Programming and Linear Equations with Positive Variables

For the convenience of our reduction, we define linear programming as a “decision” problem. We
can solve the optimization problem max{cTaz : Az < b,x > 0} by binary searching its optimal
value via the decision problem.

Since we are interested in linear programs specified using finite precision coefficients, we assume
we are given a linear program with integer coefficients. A linear program with rational coefficients
can be converted to a linear program with integer coefficients by multiplying all coefficients with
an appropriate common scaling factor.

Definition 2.1 (Linear programming (LP)). Given a matrix A € Z™*", vectors b € Z™ and
c € Z", an integer K, and R > max{1l, max{|| x|, : Az < b,z > 0}}, we refer to the LP problem
for (A, b, ¢, K, R) as the problem of finding a vector & € RY, satisfying

Az <bandc'z>K

if such an x exists and returning “infeasible” otherwise.

We also define an approximate version of solving linear programs.

Definition 2.2 (LP Approximate Problem (LPA)). An LPA instance is given by an LP instance
(A, b, ¢, K, R) and an error parameter € € [0, 1], which we collect in a tuple (A, b, ¢, K, R,€). We
say an algorithm solves the LPA problem, if, given any LPA instance, it returns a vector & > 0 such
that

cTwZK—e
Ax < b+ el

where 1 is the all-1 vector, or it correctly declares that the associated LP instance is infeasible.

Remark. Note that our definition of LPA does not require the algorithm to provide a certificate
of infeasibility — but our notion of an algorithm for LPA requires the algorithm never incorrectly
asserts infeasibility. Also note that when the LP instance is infeasible, the algorithm is still allowed
to return an approximately feasible solution, if it finds one.

We use the same approach to defining all our approximate decision problems.

We will reduce a linear program to linear equations with nonnegative variables (LEN) and linear
equations with nonnegative variables and small integral coefficients (k-LEN). We will define the
exact version of these two problems below, and define their approximate version in Section

Definition 2.3 (Linear Equations with Nonnegative Variables (LEN)). Given A € Z"*" b € 7",
and R > max{l, max{||z|, : Az = b,z > 0}}, we refer to the LEN problem for (A, b, R) as the
problem of finding a vector z € R% satisfying Az = b if such an z exists and returning “infeasible”
otherwise. N

Definition 2.4 (k-LEN (k-LEN)). The k-LEN problem is an LEN problem (A, b, R) where the
entries of A are integers in [—k, k| for some given k € Z,, which we collect in a tuple (A, b, R, k)

2.2.2 Flow Problems

A flow network is a directed graph G = (V| E), where V' is the set of vertices and F C V x V is the
set of edges, together with a vector of edge capacities u € Z|>E0| that upper bound the amount of flow
passing each edge. A 2-commodity flow network is a flow network together with two source-sink
pairs s;,t; € V for each commodity i € {1,2}.

Given a 2-commodity flow network (G = (V, E), u, s1,t1, s2,t2), a feasible 2-commodity flow is

a pair of flows f,, f, € R'zEO‘ that satisfies
1. capacity constraint: f;(e) + fy(e) < u(e), Ve € E, and
2. conservation of flows: >°, ., ep fi(u,0) =22, wepfilv,w), Vi€ {1,2},v € V\ {s;t;}.

For each commodity flow f;, we let F; = Zv:(si,v)eE fi(si,v) be the amount of flow f; routed from
s; to t;.

Similar to the definition of LP, we define 2-commodity flow problem as a decision problem. We
can solve a decision problem by solving the corresponding optimization problem.

Definition 2.5 (2-Commodity Flow Problem (2cF)). Given a 2-commodity flow network
(G, u,s1,t1, s2,t2) together with R > 0, we refer to the 2CF problem for (G, w, s1,t1, s2,ta, R)
as the problem of finding a feasible 2-commodity flow f, f satisfying

FL+F >R

if such flows exist and returning “infeasible” otherwise.

Definition 2.6 (2CF Approximate Problem (2CFA)). A 2CFA instance is given by a 2CF in-
stance (G, u,s1,t1,82,t2, R) and error parameters e, € [0,1], which we collect in a tuple
(G, u,s1,t1,52,t2, R, €,€'). We say an algorithm solves the 2CFA problem, if, given any 2CFA in-
stance, it returns a pair of flows f, f, > 0 that satisfies the conservation of flows at every vertex
other than sq,t1, so,t2 and

File)+fa(e) < (1+e)ue, Vee E (1)
Fi+ F, > (1 — 6/)R (2)

or it correctly declares that the associated 2CF instance is infeasible. We refer to the error in
as error in congestion, and the error in (2)) as error in demand.

Remark. Our definition of 2CFA works with multiplicative error in demand, thus there is no error
in demand for vertices v € V\{s1, s2,t1,t2} because their net demand is zero by the conservation
of flows.

Our definition of 2CFA allows both error in congestion and error in demand. The following
lemma shows that we can transfer a 2-commodity flow with both error in congestion and error in
demand to a 2-commodity flow with only error in congestion, by scaling the flows. We defer the
proof of Lemma 2.7 to Appendix [A]

Lemma 2.7 (2cFa simplification). Given a solution to a 2CFA instance (G, u, s1,t1, s2,t2, R, €,€'),
we can reduce it, in linear time, to a solution to 2CFA (G, wu,$1,t1,S2,t2, R, €,0), where € is the
error in congestion and satisfies
€e+¢
1—¢€°
In the rest of the paper, we will only consider error in congestion for 2CFA and represent a 2CFA
instance by a tuple (G, u, s1,t1, s2, t2, R, €), where € is the error in congestion.

€ =

To reduce LP to 2CF, we need a sequence of variants of flow problems. Again, here we only define
the exact version of these problems. Later, we will define their approximate version in Section [4

Definition 2.8 (2-Commodity Flow with Required Flow Amount (2CFR)). Given a 2-
commodity flow network (G, u, s1,t1, S2,t2) together with Ry, Ry > 0, we refer to the 2CFRr for
(G, u, s1,t1, 82, t2, Ry, R2) as the problem of finding a feasible 2-commodity flow f, f, satisfying

Fi >R, Fo2> Ry
if such flows exist and returning “infeasible” otherwise.

Definition 2.9 (Fixed flow constraints). Given a set F' C E in a 2-commodity flow network, we
say the flows f, f, satisfy fized flow constraints on F if

Fi(e) + fale) = u(e), Ve € F.

Similarly, given a set ' C E in a 1-commodity flow network, we say the flow f satisfies fized flow
constraints on F' if
f(e) = u(e), Ve € F.

Definition 2.10 (2-Commodity Fixed Flow Problem (2CFF)). Given a 2-commodity flow network
(G, u,s1,t1, 82, t2) together with a subset of edges FF C E, we refer to the 2CFF problem for the
tuple (G, F, u, s1,t1, s2,t2) as the problem of finding a feasible 2-commodity flow f,, f, > 0 which
also satisfies the fixed flow constraints on F' if such flows exist and returning “infeasible” otherwise.

Definition 2.11 (Selective Fixed Flow Problem (SFF)). Given a 2-commodity network
(G, u,s1,t1, 82, t2) together with three edge sets F,S1,S2 C E, we refer to the SFF problem for
(G, F,S1,52,u,s1,t1,s92,t2) as the problem of finding a feasible 2-commodity flow f;, f5 > 0 such
that for each ¢ € {1,2}, flow f,(e) > 0 only if e € S;, and f, f, satisfy the fixed flow constraints
on F', if such flows exist, and returning “infeasible” otherwise.

Definition 2.12 (Fixed Homologous Flow Problem (FHF)). Given a flow network with a single
source-sink pair (G, u, s,t) together with a collection of disjoint subsets of edges H = {H1,..., Hp}
and a subset of edges F' C E such that F' is disjoint from all the sets in H, we refer to the FHF
problem for (G, F,H,u, s,t) as the problem of finding a feasible flow f > 0 such that

f(e1) = f(e2), Vei,ep € Hp,1 <k <h,

and f satisfies the fixed flow constraints on F, if such flows exist, and returning “infeasible”
otherwise.

Definition 2.13 (Fixed Pair Homologous Flow Problem (FPHF)). The FPHF is an FHF problem
(G, F,H,u,s,t) where every set in H has size 2.

3 Main results

Theorem 3.1. Given an LPA instance (A,b,c, K, R,eP) where A € Z™" b € Z™,c €
Z",K € Z and A has nnz(A) nonzero entries, we can reduce it to a 2CFA instance (G =
(V,E), u, s1,t1, 52, to, R/ €21, in time O(nnz(A)log X) where X = X(A, b, ¢, K), such that

V], |E| = O(nnz(A)log X),
R*) = O(nnz3(A)RX?log? X),

Hu”max)

1
2cf _ 0 lp
‘ <nnz10(A)R3X7 log” X) <

and if the LP instance (A, b, ¢, K, R) has a solution, then the 2CF instance (G, u, 51,11, 52, to, R2)
has a solution. Furthermore, if f2¢7 is a solution to the 2CFA instance, then in time
O(nnz(A)log X), we can compute a solution x to the LPA instance.

Our main theorem immediately implies the following corollary.

Corollary 3.2. If we can solve any 2CFA instance (G = (V,E),u, sq,t1, s2,t2, R?f €) in time

O (|E|cp01y log (M>> for some small constant ¢ > 1, then we can solve any LPA instance

€

(A,b,c,K,R,¢) in time O (nnzC(A) poly log (HHZ(A)RX(A’I”C’K)))

€

3.1 Overview of our proof

We give a summary of notations used in the reduction from LP(A) to 2CF(A), as shown in Table

In this section, we will explain how to reduce an LP instance to a 2-commodity flow (2CF)
instance by a chain of efficient reductions between different problems. In each step, we reduce a
decision problem A to a decision problem B; we guarantee that (1) the reduction runs in nearly
linear time?} (2) the size of B is nearly linear in that of A, and (3) that A is feasible implies that B

2Linear in the size of problem A, poly-logarithmic in the maximum magnitude of all the numbers that describe
A, the feasible set radius, and the inverse of the error parameter if an approximate solution is allowed.

Table 1: A summary of notations used in the reduction from LP(A) to 2C¢F(A). The column “Input”
and “Output” are shared for both exact and approximate problems. The column “Error” is only
for approximate problems.

Exact problem Input Output | Approximate problem Error [
Lp (Def. [2.1 A b, c,K,R x LPA (Def. [2.2 elp

LEN (Def. [2.3 A bR z LENA (Def. [4.2 ele
2-LEN (Def. [2.4 A b, R,2 z 2-LENA (Def. 4.5 e2le
1-LEN (Def. [2.4] A bR 1 & 1-LENA (Def. 4.5 elle

vuF (Def. [2.12) | GM FP HP = {Hy, - Hp},ul s,t Nk FHFA (Def. [4.10 e, el e e
FPHF (Def. [2.13 GP,FP HP = {Hy, -+ ,Hp}, uP,s,t fP FPHFA (Def. |4.13 €, e, e, e
SFF (Def. [2.11 G*,F%,51,52,u%, 51,11, 82,12 Vi SFFA (Def. [4.16 €], €5, €515 €59, €215 Edo
20FF (Def. [2.10 G FF ul s1,t1, 50,12 7 20FFA (Def. [4.19 el e,
20FR (Def. [2.8 G",u", 51,51, 50,62, R, Ro Jid 20FRA (Def. |4.22 €€, €l

2cF (Def. [2.5 G2cf w?ef 51,11, 59,10, R2f f2ef 20FA (Def. [2.6 e2ef

is feasible, and an approximate solution to B can be turned to an approximate solution to A with
only a polynomial blow-up in error parameters, in linear time.

We follow the outline of Itai’s reduction [Ita78]. Itai first reduced an LP instance to a 1-LEN
instance (linear equations with nonnegative variables and +1 coefficients). A 1-LEN instance can
be represented by a single-commodity flow problem subject to additional homologous constraints
and fixed flow constraints (FHF). Then, Itai dropped these additional constraints step by step,
via introducing a second commodity of flow and imposing lower bound requirements on the total
amount of flows routed between the source-sink pairs. However, in the worst case, Itai’s reduction
from 1-LEN to FHF enlarges the problem size quadratically and is thus inefficient. One of our main
contributions is to improve this step so that the sparsity is preserved along the reduction chain.

Our second main contribution is an upper bound on the errors accumulated during the process
of mapping an approximate solution to the 2CFA instance to an approximate solution to the LPA
instance. We show that the error only grows by polynomial factors. Itai only considered exact
solutions between these two instances, and showed that exactly solving LP and 2CF are (polynomi-
ally) (up to polynomial factors) equivalent. Our analysis on approximate solutions also implies that
approximately solving LPA and 2CFA are (up to polylogarithmic factors) equivalent for algorithms
whose running time scales as polylog(1/e) when computing an € error solution.

We will explain the reductions based on the exact versions of the problems. At the end of this
section, we will discuss some intuitions of behind our error analysis.

3.1.1 Reducing Linear Programming to Linear Equations with Nonnegative Variables
and +1 Coefficients

Given an LP instance (A, b, ¢, K, R) where R > max{1, max{|z||, : Az < b, > 0}}, we want to
compute a vector x > 0 satisfying
Az <b,c'z>K

or to correctly declare infeasible. We introduce slack variables s, > 0 and turn the above inequal-
ities to equalities:
Az +s=bc'z —a=K

3Error parameters will be defined in Section

which is an LEN instance (;1, b, R). Comparing to Itai’s proof, we need to track two additional
parameters: R, the polytope radius, and X, the maximum magnitude of all numbers appearing in
the problem instance specification.

We then reduce the LEN instance to linear equations with +2 coefficients (2-LEN) by bitwise
decomposition. For each bit, we need to introduce a carry term, represented as a difference between
two nonnegative variables. In contrast to Itai’s reduction, we impose an upper bound for each carry
variable. We show that this upper bound does not change problem feasibility and it guarantees
the polytope radius only increases polynomially. Next, we reduce the 2-LEN instance to a 1-LEN
instance by replacing each variable with coefficient +2 by two new equal-valued variables.

All the above three reduction steps run in nearly linear time, and the problem sizes increase
nearly linearly.

3.1.2 Reducing Linear Equations with Nonnegative Variables and +1 Coefficients to
Fixed Homologous Flow Problem

One of our main contributions is a linear-time reduction from 1-LEN to FHF (single-commodity
fixed homologous flow problem). Our reduction is similar to Itai’s reduction, but more efficient.

Itai observed that a linear equation @'« = b with £1 coefficients can be represented as a fixed
homologous flow network GG. G has a source vertex s, a sink vertex ¢, and two additional vertices
JT and J~. Each variable z(i) corresponds to an edge: There is an edge from s to J7 if a(i) = 1,
and an edge from s to J~ if a(i) = —1. The amount of flow passing this edge corresponds to the
value of (7). The difference between the total amount of flow entering J* and that entering J~
equals to a'x. To force a'z = b, we add two edges e;,e; from JT to ¢t and one edge ez from J~
to tE]; we require e; and e3 to be homologous and require es to be a fixed flow with value b.

The above construction can be generalized to a system of linear equations (see Figure [1| in
Section . Specifically, we create a gadget as above for each equation ¢, and then glue all the
source (sink) vertices for each equation together as the source (sink, respectively) of the graph.
To force the consistency of the variable values, we require the edges corresponding to the same
variable in different equations to be homologous. The number of the vertices is linear in the
number of equations; the number of the edges and the total size of the homologous sets are both
linear in the number of nonzero coefficients of the linear equation system.

3.1.3 Dropping the Homologous and Fixed Flow Constraints

To reduce FHF to 2CF (2-commodity flow problem), we need to drop the homologous and fixed flow
constraints. The reduction has three main steps.

Reducing FHF to SFF. Given an FHF instance, we can reduce it to a fixed homologous flow
instance in which each homologous edge set has size 2 (FPHF). To drop the homologous requirement
in FPHF, we introduce a second commodity of flow with source-sink pair (sg,t2), and for each edge,
we carefully select the type(s) of flow that can pass through this edge. Specifically, given two
homologous edges (v, w) and (y, z), we construct a constant-sized gadget (see Figure {4|in Section
: We introduce new vertices vw, vw’, yz,yz’, construct a directed path P : so — vw — vw' —
yz — yz' — t9, and add edges (v,vw), (vw',w) and (y,yz), (yz’,z). Now, there is a directed path
Py, : v = vw — vw’ — w and a directed path P :y—yz— yz' — z. Paths P and P,, (Py2)
share an edge ey, = (vw,vw’) (ey. = (yz,yz’), respectively). We select ey, and e, for both flow
f1 and f,, select the rest of the edges along P for only f,, and select the rest of the edges along

4We remark that e;, es are multi-edges, but after the next reduction step, we will get a simple graph.

Py, Py, for only f,. By this construction, in this gadget, we have fy(eyw) = fo(eyz) being the
amount of flow routed in P, f(eyw) and f;(ey.) being the amount of flow routed in P, and Py,
respectively. Next, we choose e, and e, to be fixed flow edges with equal capacity; this guarantees
the same amount of f, is routed through P, and P,.. The new graph is an SFF instance.

Reducing SFF to 2CFF. Next, we will drop the selective requirement of the SFF instance. For
each edge (z,y) selected for flow ¢, we construct a constant-sized gadget (see Figure |5|in Section
: We introduce two vertices zy, 3/, construct a direct path s; — zy’ — xy — t;, and add edge
(z,zy) and (zy’,y). This gadget simulates a directed path from x to y for flow f;, and guarantees
no directed path from x to y for flow f; so that f; cannot be routed from z to y. We get a 2CFF
instance.

Reducing 2CFF to 2CF. It remains to drop the fixed flow constraints. The gadget we will use
is similar to that used in the last step. We first introduce new sources 51, 59 and sinks t1,ts. Then,
for each edge (x,y) with capacity u, we construct a constant-sized gadget (see Figure |§| in Section
. We introduce two vertices zy, zy’, add edges (51, zy'), (52, 2y'), (xy, t1), (xy, t2), (xy/, xy), and
(z,zy), (zy',y). This simulates a directed path from z to y that both flow f; and f, can pass
through. We let (zy/, zy) have capacity u if (z,y) is a fixed flow edge and 2u otherwise; we let all
the other edges have capacity u. Assume all the edges incident to the sources and the sinks are
saturated, then the total amount of flows routed from z to y in this gadget must be u if (x,y) is
a fixed flow edge and no larger than u otherwise. Moreover, since the original sources and sinks
are no longer sources and sinks now, we have to satisfy the conservation of flows at these vertices.
For each i € {1,2}, we create a similar gadget involving §;,¢; to simulate a directed path from t;
to s; (the original sink and source), and let the edges incident to 3;,t; have capacity M, the sum
of all the edge capacities in the 2CFF instance. This gadget guarantees that assuming the edges
incident to 5; and ¢; are saturated, the amount of flow routed from ¢; to s; through this gadget can
be any number at most M. To force the above edge-saturation assumptions to hold, we require the
amount of flow f; routed from §; to ¢; to be no less than 2M for each i € {1,2}.

Now, this instance is close to a 2CF instance except that we require a lower bound for each flow
value instead of a lower bound for the sum of two flow values. To handle this, we introduce new
sources §1, 52 and for each i € {1,2}, we add an edge (5;,3;) with capacity 2M, the lower bound
required for the value of f,.

One can check that in each reduction step, the reduction time is nearly linear and the problem
size increases nearly linearly. In addition, given a solution to the 2CF instance, one can construct
a solution to the LP instance in nearly linear time.

We also establish an error bound for mapping an approximate solution to 2CFA to an approxi-
mate solution to LPA. Although 2CFA only has error in congestion, when we map a 2CFA solution
back, we introduce different types of errors such as error in requirement, demand, selective types,
and homology. This is because, in the forward direction, a reduction step may map an edge to
multiple edges; while in the backward direction, we have to map the flows passing through a gadget
including multiple edges to a flow passing a single edge. A key observation is that the errors at
each vertex or edge accumulate in an additive way. More precisely, the increment of errors can be
upper bounded by a weighted sum of the errors at the vertices or on the edges nearby, and these
weights are polynomially bounded. So, the final error only increases polynomially.

10

Contents

1__Introductionl 1
[LI Previousworkd 2
L2 Our contributiond.« . 3
1.3 Organization of the remaining paper| e 3

2 Prelimi = 4
RTTNOEATION - -« v v v v e e e e e e e e 4
2.2 Problem Definitions] e 4

[2.2.1 Linear Programming and Linear Equations with Positive Variables| 4
222 Flow Problems| 5

B _Main results| 7

8.1 Overview of our proof] 7
3.1.1 Reducing Linear Programming to Linear Equations with Nonnegative Variables and |

[41 Coefhicients| e 8
[3.1.2 Reducing Linear liquations with Nonnegative Variables and £1 Coeflicients to Fixed |

[Homologous Flow Problem]| vt i 9
13.1.3 Dropping the Homologous and Fixed Flow Constraints|. 9

4__Proof details| 12

4.1 LP(A) to LEN(A)|l 12
MI1 LPto LEN . .. o e 12
412 LPA to LENAL . . . o o o e 14

.2 LEN(A) to 2-LEN(A)] 15
E2T TENTO2LEN . . o oo oottt e e e e e e e 15
22 TENA to 22TLENAl e 20

4.3 2-LEN(A) to I-LEN(A)[. 22
431 2-LENto I-DEN © . o0 0 0 o 22
432 2-LENA to I-DENAL o 0 00 00 oo 23

4.4 1-LEN(A) to FHE(A)l o 25
441 T-LENto FHE o 25
EA2 TTIENA T FHOFAl o o 27

4.5 FHE(A) to FPHF(A)[. 29
EET _TFHF o FPHFE] 29
452 FHEFA to FPHFEAl. o e 31

[B.6 FPHE(A) to SFE(A)[.o 34
61 TPHE to SEE. o oo o e o e e 34
462 FPHFA to SEFAl o 37

[B.7 SFEF(A) to 2CFEF(A)[. o 42
ETT SEFFE Lo 2CFEE] . . . o o o 42
472 SFFA to 2CFFAl e 44

[@.8 2CFF(A) to 2CFR(A)[. oo 50
E8I 2CFF o 2CFR] o o o e e 50
4.8.2 2CFFA to 2CERAI e 54

B9 2CFR(A) to 2CF(A)[. 59
E9T 2CFRI02CE] o oo 59
4.9.2 2CFRA to 2CFAl o o 60

[6_Main Theoreml 61

[A 2CFA simplification| 70

11

4 Proof details

The chain of reductions from LP(A) to 2CF(A) consists of nine steps. In each step, we analyze the
reduction from some problem A to some problem B in both the exact case and the approximate
case. In the exact case, we start with describing a nearly-linear-time method of reducing A to B,
and a nearly-linear-time method of mapping a solution of B back to a solution of A. Then, we prove
the correctness of the reduction method in the forward direction, that is if A has a solution then B
has a solution. In addition, we provide a fine-grained analysis of the size of B given the size of A.

In the approximate case, we formally define approximately solving each problem in the first
place, specifying bounds on various different types of error. We always use the same reduction
method from problem A to problem B in the exact and approximate cases. Thus the conclusion
that problem B has a feasible solution when problem A has a feasible solution also applies in the
approximate case.

We also always use a solution map back for the approximate case that agrees with the exact
case when there is no error. Crucially, we conduct an error analysis. That is given an approximate
solution to B and its error parameters (by abusing notations, we use € to denote), we map it
back to an approximate solution to A and measure its error 72 with respect to €Z. In other words,
we can reduce an approximate version of A with error parameters et > 74 to an approximate
version of B with error parameters €®. Note that the correctness of the reduction method in the
backward direction for the exact case follows from the approximate case analysis by setting all error
parameters to zero, which completes the proof of correctness.

4.1 LP(A) to LEN(A)
4.1.1 LP to LEN

We show the reduction from an LP instance (A, b, ¢, K, R) to an LEN instance (A, b,R). The Lp

instance has the following form:
c'x > K

Az <b (3)
x>0

To reduce it to an LEN instance, we introduce slack variables o and s:
cm 0o -1\ (T} _(K
A I O ~\b
Q@
(4)
T
s >0
Q@

Setting

S

- (et 0 -1 i r - (K
A_<A T 0>, r=|s], b—(),

o

we get an LEN instance (A, b, R) where R = max{1, max{||Z|, : A% = ~l~), x> 0}}.
If an LEN solver returns Z = (2", s',a)" for the LEN instance (A, b, R), then we return for
the LP instance (A, b, ¢, K, R); if the LEN solver returns “infeasible” for the LEN instance, then we

return “infeasible” for the LP instance.

12

Lemma 4.1 (LP to LEN). Given an LP instance (A,b,c, K, R) where A € mej beZ" ce
7" K € 7, we can construct, in O(nnz(A)) time, an LEN instance (A, b, R) where A € Z™*" b €
7™ such that

n=n+m+1, m=m+1, nnz(A)<4nnz(A),
R=5mRX(A,b,c,K), X(A,b)=X(A,b,c,K)>1,
and if the LP instance has a solution, then the LEN instance has a solution.

Proof. Based on the reduction method described above, if & is a solution to the LP instance as
shown in Eq. , we can derive a solution Z = (z',s',a)' to the LEN instance as shown in Eq.

, by setting
s=b— Ax, a=c'z—-K.

Thus, if the LP instance has a solution, then the LEN instance has a solution.
Given the size of the LP instance with n variables, m linear constraints, and nnz(A) nonzero
entries, we observe the size of the reduced LEN instance as following:

1. n variables, where

n=n+m+1.
2. m linear constraints, where
m=m+1
3. nnz(A) nonzeros, where
nnz(A) = nnz(A) + nnz(c) + m + 1 < 4nnz(A), (5)

where we use nnz(A) > m,n > 1, and nnz(c) < n.

4. R = max{1,max{|z|, : AZ = b,Z > 0}}, the radius of polytope in ¢, norm. Our goal is
to upper bound ||Z||, for every feasible solution to the LEN instance. By definition and the
triangle inequality,

2], < llzll, +a+|sl;-

Note [|z||; < R, the polytope radius in the LP instance. In addition,

a=c'z—K <l 2l + K] < llellne, B+ K],
and
Islly = [[Az — bl < [|Az[l; +[[blly < m[[All,q, 2l + 1], < m(Al B+ [1B]000)-
Therefore, we have
2], < R+ K[+ |[ellnee B+ m([[Allpae B+ 110 02)
< MR+ K|+ [ellmaz + | Allmgg + 18]) Because R > 1

<5mRX(A,b,c, K).

Hence, it suffices to set

R =5mRX(A,b, ¢ K).

13

5. X(A, i)) = X(A,b, ¢, K) because

|4 = max (Al s el 1 = max {14l el

and .
C—

max} :

To estimate the reduction time, as it takes O (nnz(zzl)) time to construct A, and O (nnz(i))>

time to construct 5, thus the reduction takes time
@) <nnz(ﬁ) + nnz(i))) =0 (nnz(]l)) Because nnz(b) < m < nnz(A)
= 0O (nnz(4)). By Eq.

4.1.2 LPA to LENA

The above lemma shows the reduction between exactly solving an LP instance and exactly solving an
LEN instance. Next, we generalize the case with exact solutions to the case that allows approximate
solutions. First of all, we give a definition of the approximate version of LEN.

Definition 4.2 (LEN Approximate Problem (LENA)). an LENA instance is given by an LEN in-
stance (A, b, R) as in Definition and an error parameter € € [0, 1], which we collect in a tuple
(A, b, R e). We say an algorithm solves the LENA problem, if, given any LENA instance, it returns
a vector & > 0 such that

|Az — b| < el,

where || is entrywise absolute value and 1 is the all-1 vector, or it correctly declares that the
associated LEN instance is infeasible.

Remark. We use an additive error in LENA so that it is consistent with the additive error used
in LP. Note this is different from a multiplicative error, which is also commonly used in solving
systems of linear equations.

We use the same reduction method in the exact case to reduce an LPA instance to an LENA in-
stance. Furthermore, if an LENA solver returns Z = (2 ', s ',)" for the LENA instance (A, b, R, €'¢),
then we return x for the LPA instance (A4, b, ¢, K, R, €’P); if the LENA solver returns “infeasible” for
the LENA instance, then we return “infeasible” for the LPA instance.

Lemma 4.3 (LPA to LENA). Given an LPA instance (A, b, c, K, R,¢€P) where A € Z™* " b €
Z™,c € ", K € Z, we can construct, in O(nnz(A)) time, an LENA instance (A, b, R,) where
A cZ™"™ beZ™ such that

n=n+m+1, m=m+1, nnz(A)<4nnz(A),

R=5mRX(A,b,c,K), X(A,b)=X(A,b,c K),

e = €.

If the LP instance (A, b, ¢, K,R) has a solution, then the LEN instance (A, b, R) has a solution.
Furthermore, if & is a solution to the LENA instance, then in time O(n), we can compute a solution
x to the LPA instance.

14

Proof. Since we use the same reduction method in the exact case to the approximate case, the
conclusions in Lemma [{.T] also apply here, including the reduction time, problem size, and that the
LEN instance has a feasible solution when the LP instance has one. It remains to show the solution
mapping time, as well as how the problem error changes by mapping an approximate solution to
the LENA instance back to an approximate solution to the LPA instance.

Based on the solution mapping method described above, given a solution &, we discard those
entries of s and «, and map back trivially for those entries of . As it takes constant time to set
the value of each entry of & by mapping back trivially, and the size of x is n, thus the solution
mapping takes O(n) time.

Now, we conduct an error analysis. If = (

by Definition T satisfies

xl,sT, a)T is a solution to the LENA instance, then

c'r—a—-K Sele,

|Az + s — b| < €°1.
Taking one direction of the absolution value, we obtain

chza—i—K—eleZK—ele,
Az < —s+ b+ €1 < b+ €ea,

As we set in the reduction that € = €'?, then we have

cle > K —€P,

Az < b+ €71,

which indicates that x is a solution to the LPA instance by Definition O

4.2 LEN(A) to 2-LEN(A)
4.2.1 LEN to 2-LEN

We show the reduction from an LEN instance (;1, b, R) to a 2-LEN instance (A, b, R,2). The LEN
instance has the following form:

Az = b,

where A € Z™*" b € Z™. To reduce it to a 2-LEN instance (A, b, R,2) in which the coefficients
of A are in {1, +2}, we do bitwise decomposition. Algorithm [1| describes how to obtain a binary
representation of an integer. The algorithm takes z € Z as an input and output a list L consisting
of all the powers such that z = s(z) >, 2 where s(2) is the sign of z. For example, z = —5, then
L ={2,0} and s(z) = —1.

We will reduce each linear equation in LEN to a linear equation in 2-LEN. For an arbitrary linear
equation g of LEN: &;53 = l;(q), q € [m], we describe the reduction by the following 4 steps.

1. We run Algorithm (1| for each nonzero entry of a, and B(q) so that each nonzero entry has a
binary representation. To simplify notations, we denote the sign of a,(i) as sf] and the list

returned by BINARYREPRESENTATION(a,(7)) as Lf], and the sign of b(q) as s, and the list

15

Algorithm 1: BINARYREPRESENTATION

Input: 2 € Z
Output: L is a list of powers of 2 such that z = s(z) 3, 2!, where s(z) returns the sign
of z.
r <+ |z[;
L« [J;
for » > 0 do
L.append(|logy]);
r 1 — 2loga7],

end

(=B N VN

returned by BINARYREPRESENTATION(E(q)) as Ly. Thus, the gth linear equation of LEN can
be rewritten as

DD 2 @@ =5, 2" (6)

i€[n] leLf leLy
M—/ -
aq(%) b(q)

2. Letting N, denote the maximum element of L, and L}, i € [7], i.e.,

ba)|}] -

then we can rearrange the left hand side of Eq. @ by gathering those terms located at the
same bit (i.e., with the same weight of power of 2), and obtain

N, = [10gy max {1yl

Ng
Z Z I[[leL}'Z] - 54 (1) 2! = Sq Z 2, (7)
1=0 \i€[i] l€L,

where 1 is an indicator function such that

L 1 itle L,
leLil)0 otherwise.

3. We decompose Eq. ([7]) into N4 + 1 linear equations such that each one representing a bit, by
matching its left hand side and right hand side of Eq. (7)) that are located at the same bit.
We will also introduce a carry term for each bit, which passes the carry from the equation
corresponding to that bit to the equation corresponding to the next bit. Without carry
terms, the new system may be infeasible even if the old one is. Moreover, since a carry can
be any real number, we represent each carry as a difference of two nonnegative variables
cq(i) — dg(i), cq(i), dg(i) > 0. Starting from the lowest bit, the following are N, + 1 linear

16

equations after decomposition.

Z]l[Ng€eLil " ()+ [eq(Ng —1) = dg(Ng — 1)] = Sqﬂ[quLq}

4. We add an additional constraint for each carry variable ¢4(i), dg (z)ﬂ
cq(i) <2X(A,b)R, d,(i) <2X(A,b)R. (9)

These constraints guarantee that the polytope radius of the reduced 2-LEN instance cannot
be too large ﬂ In our proofs, we will show that these additional constraints do not affect the
problem feasibility. We then add slack variables s (i), s () > 0 for each carry term and turn

Eq.@to o

cqli) + 54(i) = 2X (A,

)R, dg(i)+sl(i) =2X(A,b)R, 0<i<N;—1. (10)

G"l

Repeating the above process for 7 times, we get a 2-LEN instance (A4, b, R,2), where A is the
coefficient matrix, b is the right hand side vector, and R is the polytope radius.

If a 2-LEN solver returns & = (Z ', c¢',d ', CT, s?T)T for the 2-LEN instance (A4, b, R,2), then
we return # for the LEN instance (A, b R) if the 2-LEN solver returns “infeasible” for the 2-LEN
instance, then we return “infeasible” for the LEN instance.

Lemma 4.4 (LEN to 2-LEN). Given an LEN instance (A, b, R) where A € Z™*" b € 7™, we can
construct, in O (nnz(;{) log X (A, l~7)> time, a 2-LEN instance (A, b, R,2) where A € Z™*" b € Z™
such that s o
7 < i+ 4 (1 +log X(A, b)) . < 3 (1 +log X(A, b)) ,
nnz(A) < 17nnz(A) (1 +log X (A, 5)) , R=8mRX(A,Db) (1 +log X(A, 5)) ,
X(A,b) =2X(A,b)R,
and if the LEN instance has a solution, then the 2-LEN instance has a solution.

Proof. Based on the reduction method described above, from any solution & to the LEN instance
such that AZ = b, we can derive a solution Z = (Z',¢',d",s",s%")T to the 2-LEN instance.
Concretely, for any linear equation ¢ in LEN, ¢ € [m)], Wlth its decomposed equations as shown in
Eq. , we can set the value of ¢4, d, from the highest bit as

cg(Ng—1) =max {0, sglin,er,) — Zﬂ[quLz' (i) o
i€[n]

5We remark that Itai’s reduction does not have these upper bound on carry variables. We need these constraints
in our reduction to guarantee that the polytope radius is always well bounded.
SNote that without these additional constraints the radius of polytope can be unbounded.

17

dq(Nq - 1) = max 0, Z]l[quLé] . 8253(1) - Sq]l[quLq}

And then using backward substitution, we can set the value for the rest entries of ¢, and d,
similarly.

cq(Ng —2) =max {0, sglyn,—1)er,] +2[eg(Ng —1) — dg(Ng — 1)] — Z IL[(Nq—l)eLg] qufé(l)

1€[n]
= Imax 0, Z Sq]l[leLq] Z H[IELZ . i Z) 21—(Nq—1)
l:{qulqu} 1€[n]
dg(Ng=2) =max{ 0, > [> Tyepy - si@(i) — sqlper, | 27N b

I={N,—1,N,} \:i€[7]

¢q(0) =max 1 0, sqlper,) +2leq(1) = > pesy - s4E ()

i€[n]
Nq
= max § 0, Z Sqljer,) — Z]lley csa(i) | 27

=1 ZGTL]

d,;(0) = max 1 0, Z Z]IGLZ sm (1) = 8qluer,] ol=1

=1 \i€[n]

Substituting ¢,4(0), d4(0) back to the equation of the lowest bit, we will get Eq. (7), the rearranged
binary representation of equation g: &;—5: = b(q). By our setting of the carry terms, we have

N‘I
cqli), dg(i) < | D> | D Lperi) - 84 () = sqlper, | 27
I=i+1 \i€[n]
§2Mmﬂh+ng2mw{Wﬂ b Y R=2x(4 bR
max max

By setting slacks

so(i) = 2X (A, b)R — ¢q(i), si(i) =2X(A,b)R — dg(i),

we satisfy the equations (10) in the 2-LEN instance. Repeating the above process for all ¢ € [m)],
we get a feasible solution & = (:T:T, e, d’, s, sdT)T to the 2-LEN instance.

Now, we track the change of problem size after reduction. Based on the reduction method, each
linear equation in LEN can be decomposed into at most N linear equations, where

N=1+maxN, =1+ [1og2 HA‘ J <1+ LlogX(A, B)J . (11)

q€[m]

max

Thus, given an LEN instance with 72 variables, m linear equations, and nnz(A) nonzero entries, we
compute the size of the reduced 2-LEN instance as follows.

18

. 1 variables. First, all n variables in LEN are maintained. Then, for each of the m equations
in LEN, it is decomposed into at most IV equations, where at most a pair of carry variables
are introduced for each newly added equation. Finally, we introduce a slack variable for each
carry variable. Thus, we have

A < 7+ 2mN + 2mN < fi+ dim (1+1ogX(21,B)>.

. linear constraints. First, each equation in LEN is decomposed into at most N equations in
2-LEN. Next, we add a new constraint for each carry variable. Thus, we have

m < mN + 2N < 3m (1 +log X (A, B)) . (12)

. nnz(A) nonzeros. To bound it, first, for each nonzero entry in A, it will be decomposed into
at most NN bits, thus becomes at most N nonzero entries in A. Then, each equation in 2-LEN
involves at most 4 carry variables. Furthermore, there are 2imN new constraints for carry
variables, and each constraint involves a carry variable and a slack variable. In total, we have

nnz(A) < nnz(A)N + 4m + 4N

1) -
< nnz(A)

(2) - < 3
< 17nnz(A) (1 +log X (A, b)) ;

/N

14 log X (A, b)) + 127 (1+log X(A,)) + 41 (1 + log X(A, b))

(13)
where in step (1), we utilize Eq. for the bound of m; and in step (2), we use m < nnz(A).

. R, the radius of the polytope in ¢; norm. We want to upper bound Z; for every feasible
solution to the 2-LEN instance. By definition and the triangle inequality,

180, < 1l + llell +al +1sel + o]

Note ||Z]|; < R and the maximum magnitude of the entries of ¢, d, s°, s is at most 2X (4, b) R
by Eq. . Also note the dimensions of ¢, d, s¢, s¢ are mN. Thus,

||, < B+ 2X (A, b)R - 4mN < $mRX (A, b) (1 +1log X(A, B)) .

Hence, it suffices to set

R =8mRX(A,b) (1 +log X (A, 13)) .

. X(A,b) =2X (A, b)R because by construction,
1Al e =2 1Bl = 2X (A, B)R > 2.

max

To estimate the reduction time, it is noticed that it takes O(N) time to run Algorithm [1] for

each nonzero entry of A and b. And there are at most nnz(A) 4+ nnz(b) = O (nnz(A)) entries to

be decomposed. In addition, it takes O (nnz(A) + nnz(b)) = O (nnz(A)) to construct A and b.
By Eq. , performing such a reduction takes time in total

@) <N nnz(A) + nnz(A)) =0 (nnz(;{) log X (A, E)) .

19

4.2.2 LENA to 2-LENA

The above lemma shows the reduction between exactly solving an LEN instance and exactly solv-
ing a 2-LEN instance. Next, we generalize the case with exact solutions to the case that allows
approximate solutions. First of all, we give a definition of the approximate version of 2-LEN.

Definition 4.5 (k-LEN Approximate Problem (k-LENA)). A k-LENA instance is given by a k-LEN
instance (A, b, R, k) as in Definition and an error parameter € € [0, 1], which we collect in a
tuple (A, b, R, k,e). We say an algorithm solves the k-LENA problem, if, given any k-LENA instance,
it returns a vector > 0 such that

|Ax — b| < €1,

where || is entrywise absolute value and 1 is the all-1 vector, or it correctly declares that the
associated k-LEN instance is infeasible.

We can use the same reduction method in the exact case to reduce an LENA instance to a 2-
LENA instance. Furthermore, if a 2-LENA solver returns & = (Z ', ¢',d ', s, s?7)T for the 2-LENA
instance (A4, b, R, 2, €%¢), then we return Z for the LENA 1nstance (A b, R, ele) if the 2-LENA solver
returns “infeasible” for the 2-LENA instance, then we return “infeasible” for the LENA instance.

Lemma 4.6 (LENA to 2-LENA). Given an LENA instance (A, b, R, €€), where A € Z™*" b € 7™,
we can construct, in O (HDZ(A) log X (A, I~))) time, a 2-LENA instance (A, b, R,2,€%¢) where A €
7" b € 7™ such that

7 < fitdin (1 +log X(A, 5)) , m< 3m(+log X(A, 5)) , nnz(A) < 17nnz(A) (1 +log X(A, 5)) :
R =8mRX(A,b) (1 +log X(A, b) X(A,b) =2X(A,b)R,
62le _
2X (A, b)

If the LEN instance (A, b, R) has a solution, then the 2-LEN instance (A, b, R,2) has a solution.
Furthermore, if & is a solution to the 2-LENA instance, then in time O(n), we can compute a
solution T to the LENA instance.

Proof. Since we use the same reduction method in the exact case to the approximate case, the
conclusions in Lemma [4.4] also apply here, including the reduction time, problem size, and that
2-LEN has a feasible solut1on when LEN has one. It remains to show the solution mapping time, as
well as how the problem error changes by mapping an approximate solution to 2-LENA back to an
approximate solution to LENA.

Based on the solution mapping method described above, given a solution &, we discard those
entries of carry variables and slack variables, and map back trivially for those entries of . As it
takes constant time to set the value of each entry of £ by mapping back trivially, and the size of &
is 7, thus the solution mapping takes O(7n) time.

Now, we conduct an error analysis. By Definition the error of each linear equation in 2-
LENA can be bounded by €€, In particular, the equation in the 2-LENA instance that corresponds
to the highest bit of the gth equation in the LENA instance satisfies

Z [NgeLi] 5:(2> + [eq(Ng = 1) = dg(Ng — 1)] = SqliNyeL,)| = e,
i€[n]

20

which can be rearranged as

62le[cq(N -1)- Z]l[N eLi]” 5)_Sq [NgeL,] < ¢ [cq(Nq_l)_dq<Nq_1>]~ (14)

i€[n]

For the second highest bit, we have
— e+ 2[eq(Ng — 1) — dg(Ng — 1)] = [eq(Ng — 2) — dg(Ng — 2)]
< Z Tiw, —1)eLi] 53() = Sql{(v,—1)eL,]

i€[n]
< e 4 2[ey(Ny — 1) — dy(Ny — 1)] — [eq(Ny — 2) — dy(N, — 2)]. (15)
We can eliminate the pair of carry [¢,(Ny—1) — dg(N;—1)] by computing 2 x Eq. +Eq. ’
and obtain

- (20 + 21)52le —[eq(Ng —2) — dg(Ny — 2)]

< Z Z]l[leLf]] . Sz]fl':(l) — Sq]l[leLq] 2l=(Ng=1)

I={N,—1,N,} \i€[n]
< (27421 — [eg(Ng —2) — dg(N, — 2)]. (16)
By repeating the process until the equation of the lowest bit, we can eliminate all pairs of carry
variables and obtain
Nq

- (20 4o 4 2Nq)€2le <]l[leL;] 8252(@) _Sq]l[leLq] ol < (20 4+ e+ 2N<1)62le_ (17)
1=0 \i€[n]

=a, &-b(q) by Ea.
Hence, we can bound the gth linear equation in LEN by
‘&;53 - E(q)’ < (204 ... 4 2Na)2le < oNatl 2le,

which implies that the error of the ¢th equation of LENA is accumulated as a weighted sum of at
most IV, equations in 2-LENA, where the weight is in the form of power of 2.
To bound all the linear equations in LENA uniformly, we have

rle = max‘ qT —b(q)‘
q€[m]
< max 2Nat1e2le
SR
< olVee Because N = 1 + max N, as in Eq.
geEmM
< ol+log X(4,b) 2le Because N =1 + LlogX(;l, B)J as in Eq.

< 9X(A,).

2le _ ele

As we set in the reduction that e = XD’ then we have

€le

2X(A,b)

:le

¢ <2X(A,b)
which indicates that is a solution to the LENA instance. O

21

4.3 2-LEN(A) to 1-LEN(A)
4.3.1 2-LEN to I-LEN

We show the reduction from a 2-LEN instance (A, b, R,2) to a 1-LEN instance (24, b, R, 1). The
2-LEN instance has the form of AZ = b, where entries of A are integers between [—2,2]. To reduce
it to a 1-LEN instance, for each variable (j) that has a +2 coefficient, we introduce a new variable
Z'(j), replace every £2&(j) with £(Z(j) + Z'(j)), and add an additional equation Z(j) — Z'(j) = 0.

If a 1-LEN solver returns & = (', (2')") " for the 1-LEN instance (A, b, R, 1), then we return
z for the 2-LEN instance (A, b, R,2); if the 1-LEN returns “infeasible” for the 1-LEN instance, then
we return “infeasible” for the 2-LEN instance.

Lemma 4.7 (2-LEN to 1—}EN). Given a 2-LEN instance (;Al, b,R,2) where A € ZmXﬁA, becZm, we
can construct, in O(nnz(A)) time, a 1-LEN instance (A, b, R,1) where A € Z™*" b € Z™ such
that

~ —

A <2n, m<m+4n, nmnz(A)<4mz(A), R=2R, X(A,b)=X(A,b),
and if the 2-LEN instance has a solution, then the 1-LEN instance has a solution.

Proof. Based on the reduction described above, from any solution Z to the 2-LEN instance such
that Az = b, we can derive a solution £ = (2 ',(2')")" to the 1-LEN instance. Concretely, for
each Z(7) having a +2 coefficient in A, we set '(j) = Z(j), where Z’(j) is the entry that we use to
replace £2z(j) with &(2; + Z}) in the reduction. We can check that & is a solution to the 1-LEN
instance.

Now, we track the change of problem size after reduction. Based on the reduction method,

given a 2-LEN instance with n variables, m linear equations, and nnz(A) nonzero entries, we can
compute the size of the reduced 1-LEN instance as follows.

1. n variables, where
n < 2n.
It is because each variable Z(j) in 2-LEN is replaced by at most 2 variables Z(j) + Z'(j) in
1-LEN.

2. 7 linear constraints. In addition to the original m linear equations, each variable Z(j) with
+2 coefficient in 2-LEN will introduce a new equation Z(j) — Z’(j) = 0 in 1-LEN. Thus,

m < m+n.
3. nnz(A) nonzeros. To bound it, first, each nonzero entry in A becomes at most two nonzero

entries in A because of the replacement of £2z(j) by +(z(j) + Z'(j)). Next, at most 2 new
nonzero entries are generated because of the newly added equation Z(j) — Z'(j) = 0. Thus,

nnz(A) < 2(nnz(A) +72) < 4nnz(A),
where we use 7 < nnz(A).
4. R radius of polytope in £; norm. We have
1zl = llzl, + ||, < 2llz], < 2R

Hence, it suffices to set

~

R =2R.

22

5. X(A,b) = X(A, b) because by construction,

A <

< |40
mazx max

b

max ‘ ‘ ‘ ‘ max

To estimate the reduction time, it takes constant time to deal with each A(i,j) being +2, and

there are at most nnz(A) occurrences of +2 to be dealt with. Hence, it takes O(nnz(A)) time to

eliminate all the occurrence of £2. Moreover, copy the rest coefficients also takes O(nnz(A)) time.

Thus, the reduction of this step takes O(nnz(A)) time.
Ul

4.3.2 2-LENA to 1-LENA

The above lemma shows the reduction between exactly solving a 2-LEN instance and exactly solv-
ing a 1-LEN instance. Next, we generalize the case with exact solutions to the case that allows
approximate solutions.

We can use the same reduction method in the exact case to reduce a 2-LENA instance to a 1-LENA
instance. We can also use the same solution mapping method, but we make a slight adjustment
in the approximate case for the simplicity of the following error analysis. More specifically, if a 1-
LENA solver returns & = (x|, (') ") for the 1-LENA instance (21, b,R,1, '), instead of returning
z directly as a solution to the 2-LENA instance (4, b, R,2,€%¢), we set (i) = 1(z(i) + 2/(3)) if
x (i) has a coefficient £2 in the 2-LEN instance, and set (i) = (i) otherwise. In addition, if
the 1-LENA solver returns “infeasible” for the 1-LENA instance, then we return “infeasible” for the
2-LENA instance.

Lemma 4.8 (2-LENA to 1-LENA). Given a 2-LENA instance (A, b, R, 2, €%'¢) where A € Z™*" b €
Z™, we can construct, in O(nnz(A)) time, a 1-LENA instance (A, b, R, 1, e'¢) where A € Z™*" b €
7™ such that

A <2, m<m+4n, nnz(A)<4nmnz(A), R=2R, X(A, b)=X(A,b),

1
lle _ 62 ‘
n+1
If the 2-LEN instance (A, b, R,2) has a solution, then the 1-LEN instance (21, b, R, 1) has a solution.
Furthermore, if & is a solution to the 1-LENA instance, then in time O(n), we can compute a solution
T to the 2-LENA instance.

Proof. Since we use the same reduction method in the exact case to the approximate case, the
conclusions in Lemma [£.7] also apply here, including the reduction time, problem size, and that
1-LEN has a feasible solution when 2-LEN has one. It remains to show the solution mapping time,
as well as how the problem error changes by mapping an approximate solution to 1-LENA back to
an approximate solution to 2-LENA.

Based on the solution mapping method described above, it takes constant time to set the value
of each entry of & by computing an averaging or mapping back trivially, and the size of & is 7,
thus the solution mapping takes O(n) time.

Now, we conduct an error analysis. By Definition the error of each linear equation in
1-LENA can be bounded by €!’¢. For a single occurrence of A(i,j) = 2, we first bound the error
of the equation Z(j) — Z'(j) = 0, and obtain

2(j) — &' ()] < €',

23

hence, we have
—ele < z(j) - @) <€

and thus
—e' +23(j) < &(j) + &'(j) < €' +22(j). (18)

We first consider the case that, in the equation E,Z»T:i = b(i), there is only one entry j such that
a;(j) = 2. By separating this term, we can write

Adding ., A(i, k)z (k) to Eq, (18)), we have

—ell L2z () + Y A(i,k)z(k) < Z A(i k) z(k) £ (2(5) + 2'(5)) < e +22(5) + Y A, k)z(k).
ki j kg k#j

If there are k; occurrence of A(i,j) = £2, then we can generalize Eq. to

—kie'* +a & —b(i) <@ ®—b(i) < a, & — b(i)+ ke'®, (20)
hence, we can bound
=T = 7 e AT 4 1/
a; z—b(i)| < ke +|a; T — b(z)‘

(21)
< (ki 4 1)€te,

where the last inequality is because

&,;—ﬁz — IS(@)‘ < €'® by applying the error of the 1-LENA instance.
To bound all the linear equations in 2-LENA uniformly, we have

7€ = max

1€[m]

< m[aui(ki +1)et® Because of Eq.
i€lm

% — I_)(i)‘

< (R +1)ette Because k; <7

2le

As we set in the reduction that e'’¢ = 777+ then we have

21 e?le 2
e < — 1 — e
¢ < (n+)ﬁ 1 €

)

which indicates that Z is a solution to the 2-LENA instance.

24

Figure 1: The reduction from 1-LEN to FHF.

4.4 1-LEN(A) to FHF(A)
4.4.1 1-LEN to FHF

The following is the approach to reduce a 1-LEN instance (A,B,R,l) to an FHF instance
(G", Fh ul H", s,t). The 1-LEN has the form of Az = b, where A € Z™" b € Z™. For an
arbitrary equation i in the 1-LEN instance, a; & = b(i),i € [m], let J." = {jla;(j) = 1} and
J; ={jla:(j) = —1} denote the set of indices of variables with coefficients being 1 and -1 in equa-
tion i, respectively. Then, each equation can be rewritten as a difference of the sum of variables
with coefficient 1 and -1:

@) - > @) =b(i), i€ lm]. (22)
jert jeJ;
We claim that AZ = b can be represented by a graph that is composed of a number of
homologous edges and fixed flow edges, as shown in Figure
More specifically, the fixed homologous flow network consists of a source s, a sink ¢, and m

sections such that each section ¢ represents the ¢th linear equation in 1-LEN, as shown in Eq. .
Inside each section 4, there are 2 vertices {J; ,J;"} and a number of edges:

e For the incoming edges of {J; , J;"},
— if @;(j) = 1, then s is connected to J;© by edge j;‘Z with capacity R;

— if a;(j) = —1, then s is connected to J;” by edge iﬂz with capacity R;
— if a;(j) = 0, no edge is needed.

Note that the problem sparsity is preserved in the graph construction. The amount of flow
routed in these incoming edges equals the value of the corresponding variables. To ensure the

25

consistency of the value of variables over 7 equations, those incoming edges that correspond
to the same variable are forced to route the same amount of flow, i.e. (x{, &), 5 € [A)
constitute a homologous edge set that corresponds to the variable Z(j). Note that the size of
such a homologous edge set is at most .

e TFor the outgoing edges of {J;, J;'},

— Ji' is connected to t by a fixed flow edge b; that routes b(i) units of flow;
*. e with capacity R.

- J, * and J;~ are connected to t by a pair of homologous edges e;", e;

If an FHF solver returns f" for the FHF instance (G, Fh ul 1", s,t), then we return @ for the
1-LEN instance (A, b, R, 1), by setting for every j € [n],

z(j) = f&) for an arbitrary ¢ € [1]

If the FHF solver returns “infeasible” for the FHF instance, then we return “infeasible” for the 1-LEN
instance.

Lemma 4.9 (1-LEN to FHF). Given a 1-LEN instance (21, bR, 1) where A € 7%t b e 7™ we
we can construct, in time O(nnz(A)), an FHF instance (G, F* uh, H" = (Hy,--- | Hy), s,t) such
that

Vh = 2m 42, |E" <4nnz(A), |F" =, h=n+m, HuhH :max{R,X(A,B)},

max

and if the 1-LEN instance has a solution, then the FHF instance has a solution.

Proof Accordlng to the reduction described above, from any solution & to the 1-LEN instance such
that A& = b we can derive a solution f” to the FHF instance. Concretely, we define a feasible flow
f" as follows:

e For incoming edges of {J;, J;'}, we set
Fra) ==) =aG) < R Ve i)

which satisfies the homologous constraint for the homologous edge sets (:%Jl, cee
as well as the capacity constraint.

),J € [,

SR

e For outgoing edges of {J;", JZ*}, we set

frb) =b(i), Viem,

which satisfies the fixed flow constraint for edges 131, ‘e ,I;m; and set
ey =f"e) =Y &)= Y &) - b(),
jeJ; jeJg;

which satisfies the homologous constraint for edge ej, e; , and the conservation of flows for
vertices Ji+ i

Therefore, we conclude that f is a feasible flow to the FHF instance.

Now, we track the change of problem size after reduction. Based on the reduction method,
given a 1-LENA instance with 7 variables, 7 linear equations, and nnz(A) nonzero entries, it is
straightforward to get the size of the reduced FHFA instance as follows.

26

1. |V vertices, where
V| = 2/ + 2.

2. |E"| edges, where
|E"| = nnz(A) + 3 < 4nnz(A),
since 1 < nnz(A).
3. |F"| fixed flow edges, where
|F"| = .

4. h homologous edge sets, where
h =m + n.
5. The maximum edge capacity is bounded by

|«

~

= max {R,

d

} < max {R,X(A, 5)} .
max max

To estimate the reduction time, as there are |[V"| = O(si2) vertices and |E"| = O(nnz(A)) edges
in G*, thus, performing such a reduction takes O(nnz(A)) time to construct G". O

4.4.2 1-LENA to FHFA

The above lemma shows the reduction between exactly solving a 1-LEN instance and exactly solving
a FHF instance. Next, we generalize the case with exact solutions to the case that allows approximate
solutions. First of all, we give a definition of the approximate version of FHF.

Definition 4.10 (FHF Approximate Problem (FHFA)). An FHFA instance is given by an FHF
instance (G, F,u,H, s,t) as in Definition and error parameters €, €,, €4, €, € [0, 1], which we
collect in a tuple (G, F,H, u,s,t, €, €y, €4,€p). We say an algorithm solves the FHFA problem, if,
given any FHFA instance, it returns a flow f > 0 that satisfies

(1—e)ule) < fle) < (1 +e)ule), Vee F (23)
0<f(e) < (1+e)ule), Ve € E\F (24)

Y flv)— D> fo,w)| <eq Vo€ V\{st} (25)

|f (v,w) = (", w)| < (k= V)en, Y(v,w), (v',w') € H, |Hi| =k (26)

or it correctly declares that the associated FHF instance is infeasible. We refer to the error in (23))
and (24) as error in congestion, error in (25) as error in demand, and error in (26| as error in
homology.

Remark. Note that error in demand in FHFA is measured additively, which is defined as the net
flow of all the vertices other than {s,¢}. This error is caused by mapping a solution to FPHFA to
a solution to FHFA. Also note that error in demand for {s,t} are not defined since it is a single
commodity problem and no requirements are imposed on the flow value.

We can use the same reduction method and solution mapping method in the exact case to
reduce a 1-LENA instance to an FHFA instance. Note that, though we still obtain & by setting for
each j € [n],

z(j) = fh(:%;), for an arbitrary i € [m]

27

Lemma 4.11 (1-LENA to FHFA). Given a 1-LENA instance (A,B,R,l,e”e,) where A €
Zmxn b€ Z™, we can construct, in O(nnz(A)) time, an FHFA instance (G", Fh H' =
(Hy,--- ,Hh),uh,s,t,e?,eﬁ,eg,e’g) such that

VP =2 +2, |E" <d4nnz(A), |F"=m, h=n+m, HuhH :maX{R,X(A,i))},

max

and

6lle L 6lle h 6lle b 6lle
d 6’ € =

E?Zf, €w= =~ ;.5 € —_ ~ ~_-
3X(A,b) 3X(A,b) 3 X (A, b)

If the 1-LEN instance (A, b, R, 1) has a solution, then the FHF instance (G", F", H" u", s,t) has a
solution. Furthermore, if f* is a solution to the FHFA instance, then in time O(n), we can compute
a solution @ to the 1-LENA instance.

Proof. Since we use the same reduction method in the exact case to the approximate case, the
conclusions in Lemma also apply here, including the reduction time, problem size, and that
FHF has a feasible solution when 1-LEN has one. It remains to show the solution mapping time,
as well as how the problem error changes by mapping an approximate solution to FHFA back to an
approximate solution to 1-LENA.

Based on the solution mapping method described above, it takes constant time to set the value
of each entry of & as f" on certain edges. As & has 7 entries, such a solution mapping takes O(n)
time.

Now, we conduct an error analysis. We firstly investigate the error in the ith linear equation in
the 1-LENA instance &; & = b(i). Let &;(j) = fh(ig) denote the amount of flow routed through in
the ith section of G". For each edge 5&{ in the ith section of G", by error in homology defined in

Eq. , we have
|2(j) = 2i(4)] < (h = D)y, Vj €[l

because the homologous edge set corresponding to the variable Z(j) has size at most 7. Thus, we
can bound |a; & — &, &;| by
4] & — & ;| = |a; (& —)| < (h — D)ejy |l - (27)

Next, we bound diT:i'Z-. We use f h(s, Jii) to denote the total incoming flow of vertex Jii. Then,
we