
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Section 6 — Wednesday, Mar. 2nd

1 Subdifferential calculus

Subdifferential calculus is a beautiful tool to handle convex optimization situations where the ob-
jective function is non-differentiable. The central concept in subdifferential calculus is the one
of subgradient which generalizes the notion of gradient to non-differentiable functions. Most of
the convex optimization theory can be derived with subgradients instead of gradients by making
appropriate changes.

The most important property of gradients in the context of convex optimization is that they give
linear lower-bounds:

f(y)− f(x) ≥ ∇f(x)ᵀ(y − x), y ∈ Rn

when f : Rn → R is a convex function differentiable at x. This is the property that subgradients
preserve as follows from this definition:

Definition 1. Let f : Rn → R be a continuous function (not necessarily differentiable). g ∈ Rn is
a subgradient of f at x ∈ Rn iff:

f(y)− f(x) ≥ gᵀ(y − x), y ∈ Rn

The set of all subgradients at x: ∂f(x)
def
= {g ∈ Rn |g is a subgradient of f at x} is called the

subdifferential of f at x.

The reason why subgradients are so useful in convex optimization is that they always exist for
convex functions:

Proposition 2. Let f : Rn → R be a convex continuous function, then ∂f(x) 6= ∅ for all x ∈ Rn.

Proof. Consider the epigraph E(f) of f :

E(f)
def
= {(x, y) ∈ Rn × R | y ≥ f(x)}

It is easy to see that E(f) is a closed convex set. Let us now consider some x ∈ Rn. The point
(x, f(x)) is on the boundary of E(f). Applying the supporting hyperplane theorem to E(f) and
(x, f(x)) gives the desired result.

Proposition 3. Let f : Rn → R be a continuous function, then ∂f(x) is a closed and convex set.

Proof. See Problem Set 6.
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In cases where f is differentiable, the relationship between subgradients and the gradient is given
by the following proposition.

Proposition 4. Let f : Rn → R be a convex continuous function differentiable at x ∈ Rn, then
∂f(x) = {∇f(x)}.

Proof. It is clear that ∇f(x) ∈ ∂f(x). This comes from the characterization of convexity with the
gradient (which motivated the definition of subgradients in the first place).

Let us now consider g ∈ ∂f(x). For any h ∈ Rn and λ > 0, we write:

f(x+ λh)− f(x) ≥ λgᵀh

in other words, because λ > 0:
f(x+ λh)− f(x)

λ
≥ gᵀh

by taking the limit when λ goes to 0: ∇f(x)ᵀh ≥ gᵀh. After reordering, this is:

(∇f(x)− g)ᵀh ≥ 0

Choosing h = g −∇f(x), we obtain −‖∇f(x)− g‖2 ≥ 0 which implies g = ∇f(x).

It is possible to show a reciprocal of Proposition 4 (it is slightly harder so we omit the proof).

Proposition 5. Let f : Rn → R be a continuous function and assume that for some x ∈ Rn,
∂f(x) = {g}. Then f is differentiable at x and ∇f(x) = g.

Example. Let us consider f : R → R define by f(x) = |x|, x ∈ R. The only point at which f
is not differentiable is x = 0. At this point, subderivatives are characterized by the inequality
f(x) − f(0) ≥ gx, i.e. |x| ≥ gx. This implies g ∈ [−1, 1]. For x 6= 0, the subderivatives coincide
with the derivative. In summary:

∂f(x) =


1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

In the same way stationary points characterize optimal points for convex functions, we have the
following proposition:

Proposition 6. Let f be a convex continuous function, x∗ ∈ Rn is a global minimizer of f iff
0 ∈ ∂f(x).

Proof. See problem set 6.

Example. In this example we will use Proposition 6 to minimize f : Rn → R given by:

f(x) =
1

2
‖y − x‖2 + λ‖x‖1

Using the previous example, it is easy to see that the subgradients of f at x have the form:

y − x+ λs
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where:

si =


1 if xi > 0

[−1, 1] if xi = 0

−1 if xi < 0

Then if we define x∗ by:

x∗i = S(yi)
def
=


yi − λ if yi > λ

0 if yi ∈ [−λ, λ]
yi + λ if yi < −λ

It is not hard to verify that 0 ∈ ∂f(x). Hence the optimal solution is given by x∗ = S(y) where S
is the function defined above; this function is known as the soft-thresholding operator.

There are many other results in subdifferential calculus. For the purpose of designing convex
optimization algorithms, it is important to note that gradient descent can be directly generalized
to subgradient descent : at each iteration, instead of moving in the direction of the gradient, move
in the direction of any subgradient; this algorithm provably converge to an optimal solution.

A good reference on convex optimization with subdifferentials is Convex Analysis by R. Rockafellar.

2 Backtracking line search

In class, we analyze gradient descent with exact line search. At each iteration, the step size was
determined by solving:

min
t∈R

f(x+ t∇f(x))

In scenarios where exact line search is hard to solve, a simple heuristic to find a good step size is
Backtracking Line Search: starting from t = 1, the stepsize is reduced by a multiplicative factor
β < 1 until the decrease in value (with respect to f) is small enough. The formal description of
Backtracking Line Search is given by Algorithm 1.

Algorithm 1 Backtracking Line Search, with parameters α ∈ (0, 12) and β ∈ (0, 1)

Require: x, ∇f(x)
1: t← 1
2: while f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖2 do
3: t← βt
4: end while
5: return t

Remarkably, it is still possible to obtain convergence guarantees of gradient descent when using
backtracking line search.

Theorem 7. Let f : Rn → R be an m,M -strongly convex function. For any α ∈ (0, 12) and
β ∈ (0, 1), the solution x(k) at the kth iteration of gradient descent with backtracking line search
satisfies:

f(x(k))− f(x∗) ≤
(
1− 2αmmin

(
1,
β

M

))k (
f(x(0))− f(x∗)

)
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Proof. As in the standard analysis of gradient descent, we have:

f(x(k+1)) ≤ f(x(k)) +

(
Mt2

2
− t
)
‖∇f(x(k))‖2

this follows from the standard quadratic upper bound on strongly convex functions. When 0 ≤ t ≤
1
M , we have Mt2

2 − t ≤ −
t
2 , hence:

f(x(k+1)) ≤ f(x(k))− αt‖∇f(x(k))‖2 (1)

since α < 1
2 . This shows that backtracking line search finishes in at most logβ

1
M iterations. Fur-

thermore when backtracking line search terminates, we have either:

• t = 1, if we didn’t enter the while loop

• t ≥ β
M , if we entered the while loop: at the last iteration we had t ≥ 1

M , after multiplying by
β one last time, we get t ≥ β

M .

Combining this fact with Equation (2), we obtain:

f(x(k+1)) ≤ f(x(k))− αmin

(
1,
β

M

)
‖∇f(x(k))‖2

We can now conclude as in the standard analysis of gradient descent:

f(x(k+1))− f(x∗) ≤ f(x(k))− f(x∗)− αmin

(
1,
β

M

)
‖∇f(x(k))‖2

By strong convexity, we have:

‖∇f(x(k))‖2 ≥ 2m
(
f(x(k))− f(x∗)

)
Hence:

f(x(k+1))− f(x∗) ≤
(
f(x(k))− f(x∗)

)(
1− 2mαmin

(
1,
β

M

))
The statement of the theorem then follows by a simple induction on k.

Remark. Since αβ < 1
2 it is interesting to note that the rate of convergence is worse than with exact

line search. How to set α and β? There is a trade-off between:

• convergence rate, where choosing α and β as close as possible to 1
2 and 1 respectively is better

• running time, where choosing α and β close to 1
2 and 1 increases the number of iterations of

the while loop in the backtracking line search algorithm.
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