
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Section 5 — Wednesday, Feb. 24th

1 Convex functions

a. Let f1, . . . , fk be k convex functions from Rn to R, show that the function g defined by

g(x) = max
1≤i≤k

fi(x), x ∈ Rn

is convex.

b. Let f1, . . . , fk be k convex functions from Rn to R and let λ1, . . . , λk be k non-negative reals,
show that the function g defined by:

g(x) =

i∑
i=1

λkfi(x)

is convex.

c. Let f be a convex function from Rn to R. Show that for any (x,d) ∈ Rn × Rn the function
fx,d : R→ R defined by:

fx,d(λ) = f(x+ λd), λ ∈ R

is convex.

Remark. The last property is important, because it implies that the exact line search problem in
the gradient descent algorithm is a single-dimensional convex optimization problem.

2 Spectral theory

Throughout this section A is a matrix in Rn×n.

Definition 1. λ ∈ R is an eigenvalue of A iff there exists x ∈ Rn\{0} such that Ax = λx. x is then
called an eigenvector associated with λ. The set of all eigenvectors for λ, Eλ

def
= {x ∈ Rn |Ax = λx}

(note that we also include 0) is called the eigenspace associated with λ.

Remark. Note that 0 is an eigenvalue of A is equivalent to saying that E0 is not the trivial space
{0}. Which is exactly saying that the kernel (or nullspace) of A is non trivial, i.e A is a singular
matrix.

Remark. How to compute eigenvalues? λ is an eigenvalue of A iff the matrix A− λIn (where In is
the identity matrix of size n) is singular. In other words, the eigenvalues of A are the solutions to
the equation det(A− λIn) = 0. This amounts to finding the roots of a polynomial of degree n in λ.
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The following theorem is a central theorem in spectral theory.

Theorem 2 (Spectral theorem). If A is symmetric, then there exists an orthogonal matrix P such
that A = P ᵀDP , with D = diag(λ1, . . . , λn). λ1, . . . , λn are the eigenvalues of A (they are not
necessarily all distinct) and they are all real.

Remark. Remember that a matrix P in Rn×n is orthogonal iff P ᵀP = In. In particular, P is
invertible and its inverse is P ᵀ. Furthermore, P preserves the norm, that is:

‖Px‖ = ‖x‖, x ∈ Rn

To verify that fact, note that ‖Px‖2 = (Px)ᵀ(Px) = xᵀP ᵀPx = xᵀx = ‖x‖2.

Corollary 3. Let A be a symmetric matrix and let us denote by λmax its largest eigenvalue and by
λmin its smallest eigenvalue, then we have:

max
‖x‖=1

xᵀAx = λmax

min
‖x‖=1

xᵀAx = λmin

Remark. We deduce from this corollary that A is semi-definite positive iff λmin ≥ 0, i.e all the
eigenvalues of A are non-negative, and that A is definite positive iff λmin > 0, i.e all its eigenvalues
are positive.

Proof. Using the spectral theorem we can write:

xᵀAx = xᵀP ᵀDPx = (Px)ᵀD(Px), x ∈ Rn, ‖x‖ = 1

since P is invertible an preserves the norm, for any y such that ‖y‖ = 1, we can find a unique x
with ‖x‖ = 1 such that Px = y. Hence:

max
‖y‖=1

yᵀDy = max
‖x‖=1

xᵀAx

Let us now look at the quantity yᵀDy. By expanding the matrix product, we have:

yᵀDy =
n∑
i=1

λiy
2
i ≤ λmax

n∑
i=1

y2i = λmax‖y‖2 = λmax (1)

where the inequality uses that λmax is the largest eigenvalue and where we used that ‖y‖ = 1.
Furthermore, when y is such that yi = 1 for some i such that λi = 1 and yi = 0 otherwise, we see
that the inequality (1) is in fact an equality. This proves:

max
‖x‖=1

xᵀAx = λmax

The proof for the minimum can be done in a similar way.

Corollary 4. Let A be a symmetric matrix and let us denote by λmax (resp. λmin) its largest (resp.
smallest) eigenvalue, then:

λminx
ᵀx ≤ xᵀAx ≤ λmaxxᵀx, x ∈ Rn
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Proof. Simply apply Corollary 3 to x
‖x‖ .

Definition 5. We define a partial order � on matrices by:

A � B ⇔ B −A is positive semi-definite

Using the definition of semi-definite positives matrices, this can be reformulated as:

A � B ⇔ xᵀAx ≤ xᵀBx, x ∈ Rn

3 Additional remarks

3.1 Computing gradients and hessians

Last week, we saw how computing a Taylor expansion is a convenient way to compute gradients and
Hessians. A precise formulation of this technique is captured by the following proposition (credits
to Weiwei Pan for making this correct)

Proposition 6. Consider f : Rn → R and x ∈ Rn such that f is twice-differentiable at x. Assume
that for all h ∈ Rn:

f(x+ h) = f(x) + hᵀa+ hᵀAh+ o(‖h‖2)
then a = ∇f(h) and Hf (x) =

1
2(A+Aᵀ). In particular, if A is symmetric, Hf (x) = A.

3.2 Strong convexity and convergence rate of gradient descent

We saw in class that a twice-differentiable convex function f : Rn → R is strongly convex iff there
exist m > 0 and M > 0 such that:

mIn � Hf (x) �MIn, x ∈ Rn

using the definition of the partial order �, this is equivalent to:

myᵀy ≤ yᵀHf (x)y ≤Myᵀy, x ∈ Rn, y ∈ Rn

Using Corollary 3 this is equivalent to saying that m (resp. M) is a lower (resp. upper) bound on
the smallest (resp. largest) eigenvalue of Hf (x) for all x. In particular, Hf (x) needs to be definite
positive for all x.
Example. Let us consider again the example function from class:

f(x) = 4x21 − 4x1x2 + 2x22

We can rewrite:

f(x) = xᵀAx with A =

(
4 −2
−2 2

)
Using Proposition 6 it is then easy to see that Hf (x) is constant equal to A. The eigenvalues of A
can be computed by solving the equation det(A− λI2) = 0, which is equivalent to:

(4− λ)(2− λ)− 4 = 0

This equation has two solutions 3−
√
5, 3+

√
5. This implies that f is strongly convex form = 3−

√
5

and M = 3 +
√
5.
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Once we know the strong convexity constants m, M of a given function we can use that to compute
the convergence rate of the gradient descent algorithm. Remember that we showed in class that at
the kth iteration:

f(x(k))− f(x∗) ≤
(
1− m

M

)k (
f(x0)− f(x∗)

)
For the example above, the term

(
1− m

M

)
is approximately equal to 0.85. This is the amount by

which the error of current solution shrinks at every iteration of the gradient descent algorithm.

When m
M is very close to zero, the convergence will be slow. This is commonly referred to as an

ill-conditioned problem. Newton’s method that we will cover next week uses the Hessian of f to
define the step size and circumvent ill-conditioned problems.

3.3 Stopping criterion

In the formulation of gradient descent seen in class, the stopping criterion was written as:

while ‖∇f(x(k))‖ > ε

In practice we would like to know how to set ε such that when the while loop terminates, the error
of the solution f(x(k))−f(x∗) is smaller than some δ > 0. Fortunately, we have the following bound
(seen in class) induced by strong convexity:

Proposition 7. Let f : Rn → R be a m-strongly convex function, then:

f(x)− f(y) ≤ 1

2m
‖∇f(x)‖2, x ∈ Rn,y ∈ Rn

In particular, for y = x∗, this implies that setting ε =
√
2mδ in the stopping criterion of gradient

descent will guarantee that the error of the solution is smaller than δ when the algorithm terminates.
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