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1. Taking duals. Taking the dual of an optimization problem is a powerful tool for designing
efficient algorithms. The solution to the dual problem of a minimization problem provides a lower
bound to the solution of the primal problem (and an upper bound if the primal is a maximization
problem). Given the following optimization problem:

min
x∈Rm

z(x) = cᵀx

s.t Aᵀx = b

x ≥ 0

To find the dual, we first choose a vector y to create a new equality:

yᵀAx = yᵀb

0 = yᵀb− yᵀAx

We add this the objective function:

z(x) = cᵀx + yᵀb− yᵀAx

= yᵀb + (cᵀ − yᵀA)x

Suppose we choose y in such a way that cᵀ − yᵀA ≥ 0 and x ≥ 0 is feasible. Then we would have
that cᵀ − yᵀAx ≥ 0 and z(x) ≥ yᵀb. This second piece tells us that we now have a lower bound
on the objective function. For our minimization problem we want to know the largest lower bound
possible, so we will formulate this as an optimization problem. We see that:

cᵀ − yᵀA ≥ 0

= yᵀA ≤ cᵀ

= Aᵀy ≤ c

This gives us our constraints, and we can state the new optimization problem, which we call the
dual problem, as:

max
y∈Rn

bᵀy

s.t Aᵀy ≤ c

Weak duality versus strong duality

Plainly stated, the weak duality theorem states that any feasible solution of one problem corresponds
to a bound on the other. In the notation from the example above, this means bᵀȳ ≤ cᵀx̄ for any
feasible solutions x̄ and ȳ. The strong duality theorem takes this a step further and states that that
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the optimal values of the primal and dual are always equal. The difference between the optimal
values of the primal and the dual is called the duality gap, and for strong duality to hold the gap
must be 0. Ergo, if bᵀȳ = cᵀx̄ then x̄ = ȳ.

Relationship between primal and dual

Recall that the fundamental theorem of linear programming states that a linear program is either
infeasible, unbounded, or optimal. As a corrollary we make the following three statements:

• dual has a feasible solution ⇒ primal is bounded

• primal has a feasible solution ⇒ dual is bounded

• both have feasible solutions ⇒ both are optimal

Constructing the dual

The following table shows the relationship between constraint and objective function inequalities
for the primal and the dual.

2. Extreme Points. Given a polyhedron P ∈ {x ∈ Rn : A∗x ≤ b∗}, we can illustrate that x̄ ∈ P
is an extreme point of P if and only if x is a basic feasible solution of P . We let Ax = b be the
set of tight constraints for P (recall that tight constraints are those that don’t need slack variables
when converting inequalities to equalities).

We will first show that x̄ is a basic feasible solution if rank(A) = n. [We note that this is also true
in the reverse, but we leave the proof as an exercise]. For a matrix A, we can say that a set of
column indices B forms a basis if the matrix AB is a square nonsingular matrix. For a system of
equations Ax = b, we can further say that the elements xi ∈ x are basic when i ∈ B and non-basic
otherwise. We decompose the matrix Ax into a sum of basis and non-basis matrices as follows:

Ax =

n∑
i=1

xiAi

=
∑
i∈B

xiAi +
∑
i∈N

xiAi

= ABxb +ANxN

By definition, a vector x̄ is a basic feasible solution of Ax = b if Ax̄ = b, x̄N = 0, and x̄ ≥ 0 all
hold true. If x̄ is such a solution, then

b = Ax̄

= ABx̄B +AN x̄B

= ABx̄B
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Notice that this tells us that A is a full-rank matrix for which the rows are linearly independent.
This gives us rank(A) = n and thus x̄ is a basic feasible solution.

Now we will suppose that rank(A) = n and show that x̄ is an extreme point via contradiction. We
know by definition that x̄ ∈ P is not an extreme point of P if and only if x̄ = λx1 + (1− λ)x2 for
distinct points x1,x2 ∈ P and λ ∈ (0, 1). This means that

b = Ax̄

= A(λx1 + (1− λ)x2)

= λb + (1− λb) ≥ λAx1 + (1− λ)Ax2

This implies that Ax1 = Ax2 = b. Since rank(A) = n, there exists a unique solution to Ax = b.
Therefore, x̄ = x1 = x2, which is a contradiction. [We leave the other direction as an exercise].

Geometric example

Let’s consider the linear program max cᵀx : Ax ≤ b where

A =


1 1
1 0
0 1
−1 1
0 −1

 ,b =


3
2
2
0
0


If we take x̄1 =

[
1
2

]
, we can see in Figure 1 below that x̄ corresponds to an extreme point. Notice

that constraints 1 and 3 are tight, which means we can define A∗1 =

[
1 0
0 1

]
. We see that rank(A∗1) =

2 = n, which verifies that x̄1 is indeed an extreme point.

Figure 1: x̄1 is an extreme point and a basic feasible solution.

If we take x̄1 =

[
0
1

]
, then we see that constraint 4 is tight so we define A∗2 =

[
−1 0

]
. We see that

rank(A∗2) = 1 < n, so x̄2 is not an extreme point.

3. Relaxation For an integer program we obtain its LP relaxation by removing the condition
that some variables have to take integer values. This allows us to reduce many integer programming
problems to linear programming. Consider two optimization problems:

max cᵀx : x ∈ P1 (1)
max cᵀx : x ∈ P2 (2)
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If P2 ⊇ P1, then (2) is a relaxation of (1). If we take (1) to be an integer program, then (2) is one
of its possible LP relaxations.

We then can say the following about this pair:

• if (2) is infeasible, then (1) is infeasible.

proof: if (2) is infeasible, then P2 = ∅ and therefore P1 = ∅ and (1) is infeasible.

• if x̄ is an optimal solution for (2) and feasible for (1), then x̄ is also optimal for (1).

proof: supposing x̄ is optimal for (2) and feasible for (1), then x̄ maximizes cᵀ∀x ∈ P2 which
means it also maximizes ∀x ∈ P1.

• if x̄ is an optimal solution for (2), then cᵀx̄ is an upper bound for (1).

proof: since P2 ⊇ P1, the optimal value of (2) is at least as large as the optimal value of (1).

Geometric example

Let’s consider the integer program max cᵀx : Ax ≤ b where

A =


2 1
1 2
−1 −4
−1 0

 ,b =


7
7
−4
1
2

 , c =

[
1
1

]

and x is integer-valued. If we were to go about solving this problem as a linear program, we would
quickly see that the optimal solution is not an integer, as shown in Figure 2 below.

Figure 2: Relaxation of an IP (blue) to an LP (green).

We can more clearly define the set of feasible solutions by formulating an LP relaxation as
max cᵀx : Ax ≤ b where

A =

−1 0
0 −1
1 1

 ,b =

−1
−1
4

 , c =

[
1
1

]

The region of space (shown in green in Figure 2) containing the set of feasible solutions for the

integer program is S = {
[
1
1

]
,

[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
1

]
}. Of these, {

[
1
3

]
,

[
3
1

]
} is the set of optimal

solutions for the integer program, which also correspond to the extreme points. Also note that
every point that lies on the line between the extreme points is also an optimal solution for the LP
relaxation, but by definition not an optimal solution of our original IP.
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