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1. Equivalent Formulation of Farkas’ lemma. Remember Farkas’ lemma as stated in class:
let A ∈ Rm×n and b ∈ Rm then exactly one of the following two statements holds:

1. ∃x ∈ Rn, Ax = b and x ≥ 0.

2. ∃p ∈ Rm, pᵀA ≥ 0 and pᵀb < 0.

We show this is equivalent to the following reformulation: exactly one of the following two statements
holds:

1. ∃x ∈ Rn, Ax ≤ b,

2. ∃p ∈ Rm, p ≥ 0, and pᵀA = 0 and pᵀb < 0.

Letting A′ =
[
A −A I

]
T and b′ =

[
b −b 0

¯
]
T , we note that Ax = b for x ≥ 0 can be written as

A′x ≤ b′. This system is infeasible iff ∃p1,p2,p3 ∈ Rm, p1,p2,p3 ≥ 0 such that (p1−p2)
TA = pT

3

and (p1 − p2)
Tb < 0. By defining p = p1 − p2, we see that pTA ≥ 0 and pTb < 0.

Geometric interpretation of Farkas’ lemma:

Starting with A ∈ Rm×n with columns ai, the theorem states that a vector b is either inside the
convex cone generated by the columns of A or is outside. When inside, the first condition states
that b =

∑n
i=1 xiai, and xi ≥ 0 for i = 1, ..., n, illustrated in figure (a). When outside, the second

condition states the existance of a vector p normal to the hyperplane separating b from the convex
cone, illustrated in figure (b). More formally, this is stated as pTai ≥ 0 for i = 1, ...,m and pT b < 0.

(a) Condition 1 (b) Condition 2

2. Separation of Polyhedra. Let us consider two polyhedra, P = {x ∈ Rn |Ax ≤ b} and
Q = {x ∈ Rn |Cx ≤ d}, for A,B ∈ Rm×n and b,d ∈ Rm.
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a. Write a linear program which finds x ∈ P ∩ Q if P ∩ Q 6= ∅ and which is infeasible when
P ∩Q = ∅.

max
x∈Rn

0Tx

s.t Ax ≤ b

Cx ≤ d

b. Write the dual of the program found in part a.

min
x∈Rn

pT
1 b+ pT

2 d

s.t pT
1A+ pT

2 C = 0T

p1,p2 ≥ 0

c. Show that the polyhedra P and Q have an empty intersection if and only if there exists a
hyperplane which separates them strictly, i.e. there exists c ∈ Rn such that:

cᵀx < cᵀy, x ∈ P, y ∈ Q

Recall that if the primal is infeasible, the dual is either infeasible or unbounded. We have
that p1 = 0, p2 = 0 is feasible for the dual, so it must be unbounded. We can then say that
for every z ∈ R, ∃p1,p2 ≥ 0 such that pT

1 b+ pT
2 d ≤ z. We fix an ε > 0 and take z = −ε so

that pT
1 b+ pT

2 d < 0.

By definition of P and Q we have that for all x ∈ P and y ∈ Q,

Ax ≤ b

Cy ≤ d

Multiplying by pT
1 and pT

2 on both sides, we get:

pT
1Ax ≤ pT

1 b

pT
2 Cy ≤ pT

2 d

Note that we have the dual constraint that pT
1A + pT

2 C = 0T , which we can rearrange as
pT
1A = −pT

2 C. Substituting this in the second constraint yields:

(−pT
1A)Cy ≤ pT

2 d

Add the constraints and note that from our choice in z,

pT
1A(x− y) ≤ pT

1 b+ pT
2 d < 0

pT
1Ax ≤ pT

1 b < pT
2 d ≤ pT

1Ay

We can see that setting c = (pT
1A)

T satisfies

cᵀx < cᵀy, x ∈ P, y ∈ Q
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