Prof. Rasmus Kyng

Section 3 — Friday, Feb. 9th

1. Equivalent Formulation of Farkas' lemma. Remember Farkas' lemma as stated in class: let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ then exactly one of the following two statements holds:

- 1. $\exists \mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.
- 2. $\exists \mathbf{p} \in \mathbb{R}^m$, $\mathbf{p}^{\mathsf{T}} A \geq 0$ and $\mathbf{p}^{\mathsf{T}} \mathbf{b} < 0$.

We show this is equivalent to the following reformulation: exactly one of the following two statements holds:

- 1. $\exists \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} \leq \mathbf{b},$
- 2. $\exists \mathbf{p} \in \mathbb{R}^m$, $\mathbf{p} \ge 0$, and $\mathbf{p}^{\mathsf{T}} A = 0$ and $\mathbf{p}^{\mathsf{T}} \mathbf{b} < 0$.

Letting $A' = \begin{bmatrix} A & -A & I \end{bmatrix}^T$ and $\mathbf{b}' = \begin{bmatrix} \mathbf{b} & -\mathbf{b} & \underline{0} \end{bmatrix}^T$, we note that $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} \ge 0$ can be written as $A'\mathbf{x} \le \mathbf{b}'$. This system is infeasible iff $\exists \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in \mathbb{R}^m$, $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \ge 0$ such that $(\mathbf{p}_1 - \mathbf{p}_2)^T A = \mathbf{p}_3^T$ and $(\mathbf{p}_1 - \mathbf{p}_2)^T \mathbf{b} < 0$. By defining $\mathbf{p} = \mathbf{p}_1 - \mathbf{p}_2$, we see that $\mathbf{p}^T A \ge 0$ and $\mathbf{p}^T \mathbf{b} < 0$.

Geometric interpretation of Farkas' lemma:

Starting with $A \in \mathbb{R}^{m \times n}$ with columns a_i , the theorem states that a vector **b** is either inside the convex cone generated by the columns of A or is outside. When inside, the first condition states that $\mathbf{b} = \sum_{i=1}^{n} x_i a_i$, and $x_i \ge 0$ for i = 1, ..., n, illustrated in figure (a). When outside, the second condition states the existance of a vector **p** normal to the hyperplane separating **b** from the convex cone, illustrated in figure (b). More formally, this is stated as $\mathbf{p}^T a_i \ge 0$ for i = 1, ..., m and $\mathbf{p}^T b < 0$.

2. Separation of Polyhedra. Let us consider two polyhedra, $P = \{ \mathbf{x} \in \mathbb{R}^n | A\mathbf{x} \leq \mathbf{b} \}$ and $Q = \{ \mathbf{x} \in \mathbb{R}^n | C\mathbf{x} \leq \mathbf{d} \}$, for $A, B \in \mathbb{R}^{m \times n}$ and $\mathbf{b}, \mathbf{d} \in \mathbb{R}^m$.

a. Write a linear program which finds $\mathbf{x} \in P \cap Q$ if $P \cap Q \neq \emptyset$ and which is infeasible when $P \cap Q = \emptyset$.

$$\max_{\mathbf{x}\in\mathbb{R}^n} \mathbf{0}^T \mathbf{x}$$

s.t $A\mathbf{x} \leq \mathbf{b}$
 $C\mathbf{x} \leq \mathbf{d}$

b. Write the dual of the program found in part a.

$$\min_{\mathbf{x}\in\mathbb{R}^n} \mathbf{p}_1^T \mathbf{b} + \mathbf{p}_2^T \mathbf{d}$$

s.t $\mathbf{p}_1^T A + \mathbf{p}_2^T C = 0^T$
 $\mathbf{p}_1, \mathbf{p}_2 \ge 0$

c. Show that the polyhedra P and Q have an empty intersection if and only if there exists a hyperplane which separates them strictly, *i.e.* there exists $\mathbf{c} \in \mathbb{R}^n$ such that:

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} < \mathbf{c}^{\mathsf{T}}\mathbf{y}, \quad \mathbf{x} \in P, \ \mathbf{y} \in Q$$

Recall that if the primal is infeasible, the dual is either infeasible or unbounded. We have that $\mathbf{p}_1 = 0$, $\mathbf{p}_2 = 0$ is feasible for the dual, so it must be unbounded. We can then say that for every $z \in \mathbb{R}$, $\exists \mathbf{p}_1, \mathbf{p}_2 \ge 0$ such that $\mathbf{p}_1^T \mathbf{b} + \mathbf{p}_2^T \mathbf{d} \le z$. We fix an $\epsilon > 0$ and take $z = -\epsilon$ so that $\mathbf{p}_1^T \mathbf{b} + \mathbf{p}_2^T \mathbf{d} < 0$.

By definition of P and Q we have that for all $\mathbf{x} \in P$ and $\mathbf{y} \in Q$,

$$A\mathbf{x} \le \mathbf{b}$$
$$C\mathbf{y} \le \mathbf{d}$$

Multiplying by \mathbf{p}_1^T and \mathbf{p}_2^T on both sides, we get:

$$\mathbf{p}_1^T A \mathbf{x} \le \mathbf{p}_1^T \mathbf{b}$$
$$\mathbf{p}_2^T C \mathbf{y} \le \mathbf{p}_2^T \mathbf{d}$$

Note that we have the dual constraint that $\mathbf{p}_1^T A + \mathbf{p}_2^T C = \mathbf{0}^T$, which we can rearrange as $\mathbf{p}_1^T A = -\mathbf{p}_2^T C$. Substituting this in the second constraint yields:

$$(-\mathbf{p}_1^T A)C\mathbf{y} \le \mathbf{p}_2^T \mathbf{d}$$

Add the constraints and note that from our choice in z,

$$\mathbf{p}_1^T A(\mathbf{x} - \mathbf{y}) \le \mathbf{p}_1^T \mathbf{b} + \mathbf{p}_2^T \mathbf{d} < 0$$
$$\mathbf{p}_1^T A \mathbf{x} \le \mathbf{p}_1^T \mathbf{b} < \mathbf{p}_2^T \mathbf{d} \le \mathbf{p}_1^T A \mathbf{y}$$

We can see that setting $c = (\mathbf{p}_1^T A)^T$ satisfies

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} < \mathbf{c}^{\mathsf{T}}\mathbf{y}, \quad \mathbf{x} \in P, \ \mathbf{y} \in Q$$