
AM 221: Advanced Optimization Spring 2018

Dr. Rasmus Kyng Problem Set 7 (updated) — Due Wednesday, Mar. 21st at 23:59

Instructions:

• All your solutions should be prepared in LATEX and the PDF and .tex should be submitted to
Canvas. Please submit all your files as ONE archive of filetype zip, tgz, or tar.gz.

• Name the file [your-first-name]_[your-last-name].[filetype]. For example, I would call my
submission rasmus_kyng.zip.

• INCLUDE your name in the submisson pdf and any files with code.

• If the TFs cannot easily deduce your identity from your files alone, they may decide not to
grade your submission.

• For each question, a well-written and correct answer will be selected a sample solution for
the entire class to enjoy. If you prefer that we do not use your solutions, please indicate this
clearly on the first page of your assignment.

1. Entropy maximization. In this problem, we will consider the entropy maximization problem.
Let us consider a probability distribution x ∈ Rn over a finite set of size n. We have x ≥ 0 and∑n

i=1 xi = 1. The entropy of x is defined by:

H(x) =
n∑
i=1

xi log
1

xi

We are interested in maximizing entropy, or equivalently, solving the following problem:

min
x∈Rn

n∑
i=1

xi log xi

s.t
n∑
i=1

xi = 1

x ≥ 0

a. Prove Jensen’s inequality: let f : Rn → R be a strictly convex function, let x1, . . .xm by m
vectors in Rn, and let λ1, . . . , λm be such that

∑m
i=1 λi = 1 and λi ≥ 0, 1 ≤ i ≤ m, then:

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi)

and prove that the inequality is an equality if and only if x1 = x2 = · · · = xm.
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b. Using Jensen’s inequality, what is the optimal solution to the entropy maximization problem
above? Specify both the distribution x of maximum entropy and the value of its entropy.

c. We now add the constraint Ax ≤ b to the entropy maximization problem, where A ∈ Rm×n
and b ∈ Rm. The problem now becomes:

min
x∈Rn

n∑
i=1

xi log xi

s.t
n∑
i=1

xi = 1

x ≥ 0

Ax ≤ b

Show that the dual of this problem can be written in the following form:

max
ν∈Rm

− bᵀν − log

(
n∑
i=1

e−a
ᵀ
i ν

)
s.t ν ≥ 0

where ai is the ith column of A. Assuming that strong duality holds for this problem, re-derive
the result of part b. by considering a pair of primal/dual optimal solutions.

2. Minimum volume ellipsoid. An ellipsoid in Rd is the image of the unit ball by a linear
invertible map, i.e a set E defined by:

E = {Ax : x ∈ Rd, ‖x‖2 ≤ 1}

for some invertible linear map A : Rd 7→ Rd. In this case, we define the volume of the ellipsoid to
be | detA|. An equivalent parametrization of the ellipsoid is:

E = {y ∈ Rd : yᵀWy ≤ 1}

withW = (A−1)ᵀA−1. Note thatW is symmetric positive definite and that under this parametriza-
tion, the volume of the ellipsoid is (detW )−1/2.

Let us denote by S++
d the set of symmetric positive definite matrices of size d× d. Given n points

x1, . . . ,xn in Rd, the minimum volume ellipsoid problem consists in finding the ellipsoid of minimum
volume containing all points x1, . . . ,xn, that is:

min
W∈S++

d

(detW )−1/2

s.t. xᵀ
iWxi ≤ 1, 1 ≤ i ≤ n

a. Show that S++
d is convex.

b. Let us define d : S++
d → R by d(W ) = (detW )−1/2. Is d convex over S++

d ?
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Using the fact that log is increasing over R+ \ {0}, we consider the following problem which is
equivalent to the minimum volume ellipsoid problem:

min
W∈S++

d

log det(W−1)

s.t. xᵀ
iWxi ≤ 1, 1 ≤ i ≤ n

(1)

c. Show that the function f defined by f(W ) = log det(W−1) is convex and differentiable over
S++
d and that ∇f(W ) = −W−1.

d. Show that the dual of problem (1) is:

max
λ∈Rn

log det

(
n∑
i=1

λixix
ᵀ
i

)
−

n∑
i=1

λi + d

s.t. λ ≥ 0,

n∑
i=1

λixix
ᵀ
i ∈ S++

d

e. Show that the dual can be further simplified to:

max
λ∈Rn

log det

(
n∑
i=1

λixix
ᵀ
i

)
+ d log d

s.t. λ ≥ 0,

n∑
i=1

λixix
ᵀ
i ∈ S++

d ,

n∑
i=1

λi = 1

(2)

3. Support vector machines. In this problem, we will use a dataset on forged banknotes. We
will use support vector machines to construct a classifier that tries to predict if notes are forged. The
dataset is available at http://rasmuskyng.com/am221_spring18/psets/hw7/banknotes.data. In
each line, the first four columns contain measurements from a banknote (real numbers) and the last
column is a binary (0 or 1) variable indicating if the banknote was forged. Denoting by xi ∈ R4

the measurements from banknote i, the goal is to construct a classifier which takes xi as input and
predicts the last column yi ∈ {0, 1}.

First, convert the labels to ŷi ∈ {−1, 1}, i.e. ŷi = 2yi − 1. As seen in class, finding a separating
hyperplane now amounts to finding w ∈ Rd and b ∈ R such that ŷi(wᵀxi + b) ≥ 1 , for 1 ≤ i ≤ n,
where x1, . . .xn are the (modified) data points.

As seen in class, the optimization problem for support vector machines now takes the following
form:

min
w∈Rd,b∈R

1

2
‖w‖2

s.t ŷi(wᵀxi + b) ≥ 1, 1 ≤ i ≤ n

In cases where the dataset is not linearly separable, it is not possible to find w satisfying the
constraints of the above problem. In particular, we might have ŷi(wᵀxi + b) < 1 for some i. If
this is the case, there exists ξi ≥ 0 such that ŷi(wᵀxi + b) + ξi ≥ 1. The number ξi quantifies
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the “misclassification” of data point i. Since we want to discourage these misclassifications, we
incorporate them into the objective function and consider the following optimizing problem instead:

min
w∈Rd, b∈R,ξ∈Rn

1

2
‖w‖2 + λ

n∑
i=1

ξi

s.t ŷi(wᵀxi + b) + ξi ≥ 1, 1 ≤ i ≤ n
ξi ≥ 0, 1 ≤ i ≤ n

(3)

where λ is a parameter that we can choose depending on how much we want to penalize misclassified
data points.

a. Reuse your implementation of the perceptron algorithm from HW2, Question 5d and run it
on the banknote dataset. Which behavior do you observe? Can you explain why?

b. Use a convex solver to solve the convex program (3). Note that the objective function is
quadratic, so you can use a function specific to quadratic problems. In CVXOPT, this is the
cvxopt.solvers.qp function. Solve the problem for different values of λ and plot the classification
accuracy (fraction of the data points that were correctly classified) as a function of λ. How
do you explain the shape of this plot?

c. Show that the program (3) is equivalent to the following problem:

min
w∈Rd,b∈R

1

2
‖w‖2 + λ

n∑
i=1

max(0, 1− ŷi(wᵀxi + b)) (4)

d. [Optional, for bonus credits] The advantage of problem (4) is that it is unconstrained. So
we can use subgradient descent to solve it. Run the subgradient descent algorithm to solve
Problem (4) for the best value of λ found in part b.

e. [Optional, for bonus credits] Note that (4) also has a “separable” objective function as
seen in Stochastic Gradient Descent (section 7). Implement the Stochastic Gradient descent
algorithm and use it to solve (4). Compare the number of iterations required to reach the
same accuracy with gradient descent (part d.) and stochastic gradient descent (part e.).
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