
AM 221: Advanced Optimization Spring 2018

Dr. Rasmus Kyng Problem Set 6 — Due Wednesday, Mar. 7th at 23:59

Instructions:

• All your solutions should be prepared in LATEX and the PDF and .tex should be submitted to
Canvas. Please submit all your files as ONE archive of filetype zip, tgz, or tar.gz.

• Name the file [your-first-name]_[your-last-name].[filetype]. For example, I would call my
submission rasmus_kyng.zip.

• INCLUDE your name in the submisson pdf and any files with code.

• If the TFs cannot easily deduce your identity from your files alone, they may decide not to
grade your submission.

• For each question, a well-written and correct answer will be selected a sample solution for
the entire class to enjoy. If you prefer that we do not use your solutions, please indicate this
clearly on the first page of your assignment.

• For this homework, you will need to understand the section material from section on Mar. 2nd.
You can find the notes here: http://rasmuskyng.com/am221_spring18/sections/sec6.pdf.

1. Subgradients. In this problem we consider a continuous convex function f : Rn → R.

a. Show that the subdifferential ∂f(x) of f at x ∈ Rn is a closed convex set of Rn.

b. Show that x∗ ∈ Rn is a minimizer of f (i.e a solution to minx∈Rn f(x)) iff 0 ∈ ∂f(x).

2. Perceptron revisited. In this problem we will revisit the perceptron algorithm of Lecture
2 to find a separating hyperplane for a linearly separable dataset. The dataset D is a set of pairs
D def

= {(xi, yi), 1 ≤ i ≤ n} with xi ∈ Rd−1 and yi ∈ {0, 1}. We saw that after transformation of
the data, finding a separating hyperplane amounts to finding w ∈ Rd such that wᵀx′i > 0 for all i,
where the definition of x′i using xi and yi is given in the lecture notes.

Let us define the following function:

f(w)
def
=

n∑
i=1

max(0,−wᵀx′i), w ∈ Rd

a. Show that f is convex and non-negative over Rd. Is it differentiable?
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b. Assume that the dataset D is linearly separable. Show that any w∗ ∈ Rd solution to:

min
w∈Rd

f(w)

defines a separating hyperplane of D. What is the value of f at w∗?

c. Let us define:
fi(w)

def
= max(0,−wᵀx′i), w ∈ Rd

and:

gi(w) =

{
0 if wᵀx′i > 0

−x′i otherwise

show that for all w ∈ Rd, gi(w) is a subgradient of fi at w.

d. Describe the perceptron algorithm in the language of subgradients and the algorithms for
convex optimization we saw in class. In particular, how would you describe the normalization
by ‖x′i‖ in the perceptron algorithm. Also note that each iteration of the perceptron focuses
on one data point of the dataset at a time, can you draw an analogy with something we saw
in class?

3. Gradient descent with weaker assumptions. In this problem we will analyze the gradient
descent algorithm of Lecture 9 under weaker regularity assumptions. We consider a differentiable
convex function f : Rn → R and only assume that f ’s gradient is L-Lipschitz continuous as intro-
duced in the previous problem set:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, (x,y) ∈ Rn × Rn

We do not assume that f is twice-differentiable. Finally, we choose a constant step size t = 1
L

instead of doing exact or backtracking line search.

a. Show that the L-Lipschitz continuous assumption on f ’s gradient implies the following quadratic
upper bound on f :

f(y) ≤ f(x) +∇f(x)ᵀ(y − x) +
L

2
‖y − x‖2, x ∈ Rn, y ∈ Rn

Hint: use the fact you proved in Problem set 5 that L
2x

ᵀx− f(x) is a convex function.

b. Let us denote by x(k) the current solution at the kth iteration of the gradient descent algorithm.
Show that:

f(x(k+1)) ≤ f(x(k))− 1

2L
‖∇f(x(k))‖2, k ∈ N

Show that this implies:

f(x(k+1)) ≤ f(x∗) +∇f(x(k))ᵀ(x(k) − x∗)− 1

2L
‖∇f(x(k))‖2, k ∈ N

where x∗ is a minimizer of f over Rn.
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c. Show that:

∇f(x(k))ᵀ(x(k) − x∗)− 1

2L
‖∇f(x(k))‖2 = L

2

(
‖x(k) − x∗‖2 − ‖x(k+1) − x∗‖2

)
, k ∈ N

hence, using b., we have:

f(x(k+1))− f(x∗) ≤ L

2

(
‖x(k) − x∗‖2 − ‖x(k+1) − x∗‖2

)
, k ∈ N

d. Show that part c. implies:

f(x(k))− f(x∗) ≤ L

2k
‖x0 − x∗‖2, k ∈ N

Given ε > 0, how many iterations of gradient descent are required to obtain f(x(k))−f(x∗) <
ε? How does this compare to the strongly convex case?

4. Gradient descent, condition number, Newton’s method. In this problem we will con-
sider the following minimizing problem:

min
x∈R2

f(x)
def
= min

x∈R2
xᵀAx

with:

A =

(
1 + λ 1− λ
1− λ 1 + λ

)
where λ is a real number with λ ≥ 1.

a. Compute the gradient of f , its Hessian and its eigenvalues as a function of λ. What is the
optimal solution of the above problem?

b. Implement the gradient descent algorithm for the above problem. Use backtracking line search
as seen in section with α = 0.3 and β = 0.7.

c. Run the gradient descent algorithm for several values of lambda between 1 and 105. For each
value of λ, record the number of iterations required to reach a solution with error smaller than
10−10. Choose x0 = [1., 2.] as your starting point. Draw a plot of the number of iterations as
a function of λ. How would you explain these results?

d. Implement Newton’s method for the above problem. Use backtracking line search with α = 0.3
and β = 0.7. For the same values of λ you used in c., show the number of the iterations required
to reach the same error 10−10. How would you explain those results?
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