
AM 221: Advanced Optimization Spring 2018

Dr. Rasmus Kyng Problem Set 5 — Due Wednesday, Feb. 28th at 23:59

Instructions:

• All your solutions should be prepared in LATEX and the PDF and .tex should be submitted to
Canvas. Please submit all your files as ONE archive of filetype zip, tgz, or tar.gz.

• Name the file [your-first-name]_[your-last-name].[filetype]. For example, I would call my
submission rasmus_kyng.zip.

• INCLUDE your name in the submisson pdf and any files with code.

• If the TFs cannot easily deduce your identity from your files alone, they may decide not to
grade your submission.

• For each question, a well-written and correct answer will be selected a sample solution for
the entire class to enjoy. If you prefer that we do not use your solutions, please indicate this
clearly on the first page of your assignment.

1. Least-squares regression. In lecture 1, we introduced the problem of least-squares regression.
Given a dataset of n data points (xi, yi) ∈ Rd × R, 1 ≤ i ≤ n, the goal is to find a ∈ Rd and b ∈ R
so as to minimize:

RSS(a, b) =
1

n

n∑
i=1

(yi − xᵀ
i a− b)

2

In other words, we are trying to approximate yi ' xᵀ
i a−b and the approximatation error is measured

by the function RSS above.

a. Rewrite the least-squares regression problem in matrix form, that is find X ∈ Rn×(d+1) and
Y ∈ Rn such that the problem above takes the form:

min
d∈Rd+1

‖Xd− Y ‖2

and express X and Y in terms of the data points (xi, yi).

b. Define f : Rd+1 → R by f(d) = ‖Xd − Y ‖2 for all d ∈ Rd+1. Compute the gradient and
Hessian of f and show that f is convex.

c. Give a sufficient and necessary condition for f to be strongly convex.

In all the following questions, we will assume that the condition of part c. is satisfied.
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d. Solve the equation ∇f(x) = 0 and explain how you would use this to find an optimal solution
to the least-squares regression problem.

e. An alternative approach to d. is to use gradient descent. For this, we need to solve for any
direction δ ∈ Rd+1 the following line search problem:

min
λ∈R

f(d+ λδ)

Give a closed-form formula for the optimal solution to the line-search problem. The solution
should be expressed in termes of X,Y,d and δ.

2. Wine quality revisited. In this problem, we will re-use the dataset from Homework 3 avail-
able at http://rasmuskyng.com/am221_spring18/psets/hw3/wines.csv. Please refer to Home-
work 3 for a description of the dataset. We will again fit a linear model to predict wine quality as a
function of the chemical measurements. However we will use least-squares regression (as presented
in Problem 1 above) instead of `1-regression.

a. Verify that for this dataset, matrixX as defined in Problem 3 satisfies the condition of Problem
3, part c.

b. Write code to compute the optimal solution to the least-squares regression problem using the
method derived in Problem 3, part d. Report your code, the linear model (a and b) and the
value of function RSS for this model.

c. Implement the gradient descent algorithm for the least-squares regression problem. You are
not allowed to use already existing implementations of gradient descent (but you can of course
use libraries for matrix computation). You should use exact line search as derived in Problem
3, part e. Report your code, the linear model and the value of RSS for this model. How does
this compare to the result found in part b.?

d. Compute from matrix X an upper-bound on the convergence rate of the gradient descent
algorithm. Discuss the relative strengths and weaknesses of method b. and method c.

3. Lipschitz-continuous Gradient. A common smoothness assumption made to show conver-
gence of optimization algorithms for convex functions is to assume that the gradient is Lipschitz-
continuous. We say that a differentiable function f from Rn to R has a gradient which is L-Lipschitz-
continuous iff:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (x,y) ∈ Rn × Rn

In class, we saw a definition of L-Lipschitz-continuous for the special case of twice differentiable
functions. In this problem, you will show (among other things) that the definition state above
implies the condition stated in class whenever the function is twice differentiable.

a. Show that a differentiable function g : Rn → R is convex if and only if:(
∇g(x)−∇g(y)

)ᵀ
(x− y) ≥ 0, (x,y) ∈ Rn × Rn
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b. Assume that f ’s gradient is L-Lipschitz continuous (f is not necessarily convex), then show
that the function g defined by:

g(x) =
L

2
‖x‖2 − f(x), x ∈ Rn

is convex.

c. Assume that f twice differentiable and that its gradient is L-Lipschitz-continuous, then show
that:

Hf (x) � LIn, x ∈ Rn

where In ∈ Rn×n is the identity matrix.

Remark. It is possible to show that when f is convex, the reverse statement is true: if Hf (x) �
LIn for all x, then f ’s gradient is L-Lipschitz-continuous.
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