
AM 221: Advanced Optimization Spring 2018

Dr. Rasmus Kyng Problem Set 10 — Due Wednesday, April. 25th at 23:59

Instructions:

• All your solutions should be prepared in LATEX and the PDF and .tex should be submitted to
Canvas. Please submit all your files as ONE archive of filetype zip, tgz, or tar.gz.

• Name the file [your-first-name]_[your-last-name].[filetype]. For example, I would call my
submission rasmus_kyng.zip.

• INCLUDE your name in the submisson pdf and any files with code.

• If the TFs cannot easily deduce your identity from your files alone, they may decide not to
grade your submission.

• For each question, a well-written and correct answer will be selected a sample solution for
the entire class to enjoy. If you prefer that we do not use your solutions, please indicate this
clearly on the first page of your assignment.

1. Randomized Algorithm for Maximum Cut: Success with High Probability. In class,
we saw an approximation algorithm for the Maximum Cut problem (see the lecture on April 11th).

MAX CUT is the following discrete optimization problem: Given an undirected graph G = (V,E),
find a set of vertices S ⊆ V (a.k.a. a cut) that maximizes C(S) := |{u, v} ∈ E : u ∈ S and v ∈ V \ S|.

Let S∗ ⊆ V be an optimal solution to the MAX CUT problem.

In class, we proved that the Goemans-Williamson rounding algorithm produces a random cut Ŝ ⊆ V
s.t. EC(Ŝ) ≥ αC(S∗) for a constant α > 0.5.

(a) Show that for an non-negative random variable Z, s.t. Z ≤ K where EZ ≥ K/2 and K ≥ 1,

P[Z ≥ EZ − 1] ≥ 1

10K
.

Hints:

• Use Markov’s inequality on K − Z.

(b) Use the result you just established to prove that if we run the Goemans-Williamson rounding
algorithm independently 10|E| log(1/δ) times for some δ ∈ (0, 1), then with probability at
least 1− δ, one of the cuts has value at least αC(S∗)− 1.
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2. Randomized Algorithm for Maximum Cut: A Stronger Result for Large Cuts. This
exercise also deals with the MAX CUT problem (see Problem 1.). MAX CUT is the following
discrete optimization problem: Given an undirected graph G = (V,E), find a set of vertices S ⊆ V
(a.k.a. a cut) that maximizes C(S) := |{u, v} ∈ E : u ∈ S and v ∈ V \ S|. Let S∗ ⊆ V be an
optimal solution to the MAX CUT problem. Let m = |E|, and let us index the vertices so that
V = [n].

In class (see the lecture on April 11th), we learnt that algorithm exists for solving the Goemans
Williamson Semi-Definite Program in polynomial time. The program, in its vector form, is stated
below.

max
u1,...,un∈Rn

∑
{i,j}∈E

1

4
||ui − uj ||2

∀i ∈ [n].||ui||2 = 1.

(1)

In class, we studied a rounding algorithm based on choosing a random hyperplane with normal
vector g ∈ Rn and defining a graph cut Ŝ ⊆ V by Ŝ = {i ∈ V : uᵀ

i g ≥ 0}. Recall that we can
obtain uniformly random hyperplane through the origin by letting each entry g(i) be iid. N(0, 1)
distributed (standard normal distribution).

In class, we prove that EC(Ŝ) ≥ αC(S∗) for a constant α > 0.5.

Suppose the maximum cut of the graph has value C(S∗) = (1− ε)m for some scalar ε ∈ (0, 1/2].

(a) Prove that the SDP always takes value at most m.

(b) Prove that EC(Ŝ) ≥ (1−
√
ε)m.

Hints:

• You may find it helpful to note that 1
π arccos(2x− 1) ≥ 1−

√
x.

• To relate the average probability of cutting an edge to the average value of 1
4 ||ui−uj ||2,

you may find Jensen’s Inequality helpful.

(c) What factor approximation to the true objective does the algorithm get (in expectation) when
ε = 10−4? Is this better than 0.878?

3. Properties of Submodular Functions.

a. Recall that for a finite set N , a function f : 2N → R is defined to be submodular if ∀S, T ⊆ N ,
such that S ⊆ T and ∀u ∈ N \ T , the following holds:

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T )

Prove that any non-negative submodular function is also subadditive, i.e. if f : 2N → R≥0 is
submodular then f(S ∪ T ) ≤ f(S) + f(T ) for any S, T ⊆ N .

b. Prove that a function f : 2N → R≥0 is submodular if and only if for any S ⊆ N the marginal
contribution function fS defined by fS(T ) = f(S ∪ T )− f(S) (for T ⊆ N) is subadditive.
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Algorithm 1 Greedy Algorithm
1: Set S = ∅
2: while |S| < k do
3: S ← S ∪ argmaxa∈NfS(a)
4: end while
5: return S

4. Approximate Oracles. Recall the greedy algorithm for maximizing a non-negative monotone
submodular function described below.

For a given α < 1 and set S ⊆ N we will say that f̃S is an α-approximate marginal oracle if for any
T ⊆ N we have the guarantee that αfS(T ) ≤ f̃S(T ) ≤ fS(T ), for a given constant α < 1. Prove
that a greedy algorithm like the one above which uses an α-approximate marginal oracle in every
iteration in line (3) provides a 1− 1/eα approximation to the optimal solution.
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