
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 8 — February 22nd

1 Overview

In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed
the simplex method for finding optimal solutions. In this lecture we return to convex optimization
and give a characterization of optimality. The main theorem we will prove today shows that for a
convex function f : S → R defined over a convex set S, a stationary point (the point x̄ for which
∇f(x̄)) is a global minimum. We we will review basic definitions and properties from multivariate
calculus, prove some important properties of convex functions, and obtain various characterizations
of optimality.

2 A Characterization of Convex Functions

Recall the definitions we introduced in the second lecture of convex sets and convex functions:

Definition. A set S is called a convex set if any two points in S contain their line, i.e. for any
x1,x2 ∈ S we have that λx1 + (1− λ)x2 ∈ S for any λ ∈ [0, 1].

Definition. For a convex set S ⊆ Rn, we say that a function f : S → R is convex on S if for
any two points x1,x2 ∈ S and any λ ∈ [0, 1] we have that:

f (λx1 + (1− λ)x2) ≤ λf(x1) +
(

1− λ
)
f(x2).

We will first give an important characterization of convex function. To so, we need to characterize
multivariate functions via their Taylor expansion.

2.1 First-order Taylor approximation

Definition. The gradient of a function f : Rn → R at point x ∈ Rn denoted ∇f(x̄) is:

∇f(x) :=

[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

]ᵀ

First-order Taylor expansion. The first order Taylor expansion of a function is:
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Figure 1: Depiction of first-order taylor expansion.

• For a function f : R→ R of a single variable, differentiable at x̄ ∈ R, we write:

∀x ∈ R, f(x) = f(x̄) + f ′(x̄)(x− x̄) + o(||x− x̄||)

where by definition:

lim
x̄→x

o(||x− x̄||)
||x− x̄||

= 0

• Similarly, when f : Rn → R is a multivariate function, differentiable at x̄ ∈ Rn, we write:

∀x ∈ Rn, f(x) = f(x̄) +∇f(x̄)ᵀ(x− x̄) + o(‖x− x̄‖)

• If f is continuous over [x̄,x] and differentiable over (x̄,x), then:

f(x) = f(x̄) +∇f(z)ᵀ(x− x̄), for some z ∈ [x̄,x].

This characterization implies that the function f can be approximated by the affine function l :
x 7→ f(x̄) + f ′(x̄)(x− x̄) when x is “close to” x̄.

2.2 Directional derivatives

Definition. Let f : Rn → R be a function differentiable at x ∈ Rn and let us consider d ∈ Rn
with ‖d‖ = 1. We define the derivative of f at x in direction d as:

f ′(x,d) = lim
x→0

f(x + λd)− f(x)

λ

Claim 1. f ′(x,d) = ∇f(x)ᵀd.

Proof. Using the first order expansion of f at x:

f(x + λd) = f(x) +∇f(x)ᵀ(λd) + o(‖λd‖)
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hence, dividing by λ (and noticing that ‖λd‖ = λ2‖d‖):

f(x + λd)− f(x)

λ
= ∇f(x)ᵀd + o(λ‖d‖)

letting λ go to 0 concludes the proof.

2.3 Lower bounding convex functions with affine functions

In order to prove the characterization of convex functions in the next section we will need the
following lemma. This lemma says that any convex function can essentially be underestimated by
an affine function.

Theorem 2. Let f : Rn → R and S be a convex subset of Rn. Then, f is convex if and only if for
any x,y ∈ S we have that f(y) ≥ f(x) +∇f(x)ᵀ(y − x).

Proof. [ =⇒ ] Assume f is convex, and let z = λy + (1−λ)x for some x,y ∈ S and λ ∈ [0, 1]. From
convexity of f we have that:

f(z) = f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)

and therefore by subtracting f(x) from both sides we get:

f (x + λ(y − x))− f(x) = f (λy + (1− λ)x)− f(x)

= f(z)− f(x)

≤ λf(y) + (1− λ)f(x)− f(x)

= λf(y)− λf(x).

Thus we get that (for λ > 0):

f (x + λ(y − x))− f(x)

λ
≤ f(y)− f(x)

Applying Claim 1 on d = x− y we have that:

∇f(x)ᵀ(y − x) = lim
λ→0+

f(x + λ(y − x))− f(x)

λ
≤ f(y)− f(x).

[⇐= ] Assume that f(y) ≥ f(x) +∇f(x)ᵀ(y− x) for any x,y ∈ S and show that f is convex. Let
x,y ∈ S and z = λy + (1− λ)x. By our assumption we have that:

f(y) ≥ f(z) +∇f(z)ᵀ(y − z) (1)
f(x) ≥ f(z) +∇f(z)ᵀ(x− z) (2)

Multiplying (1) by λ and adding (1− λ)× (2) gives us:

λf(y) + (1− λ)f(x) ≥ λf(z) + λ∇f(z)ᵀ(y − z) + (1− λ)f(z) + (1− λ)∇f(z)ᵀ(x− z)

= f(z) +∇f(z)ᵀ(λy − λz) +∇f(z)ᵀ
(

(1− λ)x− (1− λ)z
)

= f(z) +∇f(z)ᵀ
(
λy + (1− λ)x− z

)
= f(λy + (1− λ)x)

since λy + (1− λ)x− z = 0. This is exactly the definition of convexity.
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3 Conditions for optimality

Definition. A point x̄ ∈ Rn at which ∇f(x̄) = 0 is called a stationary point.

3.1 Necessary conditions

We now want to find necessary and sufficient conditions for local optimality.

Claim 3. If x̄ is a local extremum of a differentiable function f : Rn → R, then ∇f(x̄) = 0.

Proof. Let us assume that x̄ is a local minimum for f . Then for all d ∈ Rn, f(x̄) ≤ f(x̄ + λd) for
λ small enough. Hence:

0 ≤ f(x̄ + λd)− f(x̄) = λ∇f(x̄)ᵀd + o(‖λd‖)

dividing by λ > 0 and letting λ → 0+, we obtain 0 ≤ ∇f(x̄)ᵀd. Similarly, dividing by λ < 0 and
letting λ → 0−, we obtain 0 ≥ ∇f(x̄)ᵀd. As a consequence, ∇f(x̄)ᵀd = 0 for all d ∈ Rn. This
implies that ∇f(x̄) = 0.

The case where x̄ is a local maximum can be dealt with similarly.

The above claim states that a a stationary point can either be a minimum, maximum, or a saddle
point of the function, and we will see in the following section that the Hessian of the function can
be used to indicate which one exactly. For convex functions however it turns out that a stationary
point necessarily implies that the function is at its minimum. Note that with the above Claim, this
says that for a convex function a point is optimal if and only if it is stationary.

Proposition 4. Let S ⊆ Rn be a convex set and f : S → Rn be a convex function. If x̄ a stationary
point then x̄ is a global minimum.

Proof. From Theorem 2 we know that for any x,y ∈ S : f(y) ≥ f(x̄) + ∇f(x̄)(y − x). Since
∇f(x̄) = 0 this implies that f(y) ≥ f(x̄). As this holds for any y ∈ S, x̄ is a global minimum.

4 Characterizations of Convexity and Optimality via the Hessian

We will now use the Hessian of a function to obtain characterizations of convexity and optimality.
We will begin by defining the Hessian of a function and then see that it plays a role in approximating
a function via a second-order Taylor expansion. We will then use semi-definiteness of the Hessian
matrix to characterize both conditions of optimality as well as the convexity of a function.
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Definition. Given a function f : Rn → R its Hessian matrix at point x ∈ Rn denoted Hf (x)
(also sometimes denoted ∇2f(x)) is:

Hf (x) :=


∂2f(x)
∂x21

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x22

. . . ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2n



Second-order Taylor expansion. When f is twice differentiable it is possible to obtain an
approximation of f by quadratic functions.

• Assume that f : Rn → R is twice differentiable at x̄ ∈ Rn, then:

∀x ∈ Rn, f(x) = f(x̄) +∇f(x̄)ᵀ(x− x̄) +
1

2
(x− x̄)ᵀHf (x̄)(x− x̄) + o(‖x− x̄‖2)

where by definition:

lim
x→x̄

o(‖x− x̄‖2)

‖x− x̄‖2
= 0

• Similarly to the first-order alternative expansion, we have, when f is of class C1 over [x̄,x]
and twice differentiable over this interval:

∀x ∈ Rn, f(x) = f(x̄) +∇f(x̄)ᵀ(x− x̄) +
1

2
(x− x̄)ᵀHf (z)(x− x̄) for some z ∈ [x̄,x].

Semi-definiteness of a matrix. The following classification of symmetric matrices will be useful.

Definition. Let A by a symmetric matrix in Rn×n. We say that A is:

1. positive definite iff xᵀAx > 0 for all x ∈ Rn \ {0};

2. negative definite iff xᵀAx < 0 for all x ∈ Rn \ {0};

3. positive semidefinite iff xᵀAx ≥ 0 for all x ∈ Rn;

4. negative semidefinite iff xᵀAx ≤ 0 for all x ∈ Rn;

5. Otherwise we say that A is indefinite.

Example: indefinite matrix. Consider the following matrix A:

A :=

[
+4 −1
−1 −2

]
Then we have xᵀAx = 4x2

1 − 2x1x2 − 2x2
2. For x = (1 0), we have xᵀAx = 4 > 0. For x = (0 1) we

have xᵀAx = −2 < 0. A is therefore indefinite.

The following theorem gives a useful characterization of (semi)definite matrices.

5



Theorem 5. Let A be a symmetric matrix in Rn×n.

1. A is positive (negative) definite iff all its eigenvalues are positive (negative);

2. A is positive (negative) semidefinite iff all its eigenvalues are non-negative (non-positive);

3. Otherwise A is indefinite.

Proof. The spectral theorem tells us that any real symmetric matrix is diagonalizable. This allows
us to diagonalize A: we can write A = P ᵀDP where D is a diagonal matrix. Then one can write
xᵀAx = xᵀP ᵀDPx = (Px)ᵀD(Px). Let us define y := Px, then we have:

xᵀAx =
n∑
i=1

λiy
2
i

where λ1, . . . , λn are the diagonal elements of D, the eigenvalues of A. Also note that since P is
invertible, y = 0 iff x = 0. If λi > 0 for all i, then we see that xᵀAx > 0 for all x 6= 0. For the
other direction, choosing y such that yi = 1 and yj = 0 for j 6= i yields λi > 0.

The other cases can be dealt with similarly.

4.1 Necessary and sufficient conditions for local extrema

We can now give the second-order necessary conditions for local extrema via the Hessian.

Theorem 6. Let f : Rn → R be a function twice differentiable at x̄ ∈ Rn.

1. If x̄ is a local minimum, then Hf (x̄) is positive semidefinite.

2. If x̄ is a local maximum, then Hf (x̄) is negative semidefinite.

Proof. Let us assume that x̄ is a local minimum. We know from Theorem 3 that ∇f(x̄) = 0, hence
the second-order expansion at x̄ takes the form:

f(x̄ + d) = f(x̄) +
1

2
dᵀHf (x̄)d + o(‖d|2)

Because x̄ is a local minimum, when ‖d‖ is small enough:

0 ≤ f(x̄ + d)− f(x̄) ∼‖d‖→0
1

2
dᵀHf (x̄)d

So dᵀHf (x̄) must be non-negative when ‖d‖ is small enough. This is true for any such d, hence
Hf (x̄) is positive semidefinite.

Combining the conditions of Theorem 3 (stationary point) and Theorem 5 is almost enough to
obtain a sufficient condition for local extrema. We only to slightly strengthen the conditions of
Theorem 5.

Theorem 7. Let f be a function twice differentiable at a stationary point x̄:
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1. if Hf (x̄) is positive definite then x̄ is a local minimum.

2. if Hf (x̄) is negative definite then x̄ is a local maximum.

Proof. Let us assume that Hf (x̄) is positive definite. We know that x̄ is a stationary point. We
can write the second-order expansion at x̄:

f(x̄ + d) = f(x̄) +
1

2
dᵀHf (x)d + o(‖d‖2)

When ‖d‖ is small enough, f(x̄ + d)− f(x̄) has the same sign as 1
2d

ᵀHf (x)d. But because Hf (x̄)
is positive definite, for any d 6= 0 small enough, f(x̄ + d)− f(x̄) > 0. This proves that x̄ is a local
minimum.

We can make a similar proof when Hf (x̄) is negative definite.

Remark 8. When Hf (x̄) is indefinite at a stationary point x̄, we have what is known as a saddle
point : x̄ will be a minimum along the eigenvectors of Hf (x̄) for which the eigenvalues are positive
and a maximum along the eigenvectors of Hf (x̄) for which the eigenvalues are negative.

4.2 Characterization of convexity

Theorem 9. Let S ⊆ Rn be convex, and f : S → R twice continuous differentiable on S.

1. If Hf (x) is positive semi-definite for any x ∈ S then f is convex on S.

2. If Hf (x) is positive definite for any x ∈ S then f is strictly convex on S.

3. If S is open and f is convex, then Hf (x) is positive semi-definite ∀x ∈ S.

Proof.

1. From the tailor expansion of f we know that for some z ∈ [x,y]:

f(y) = f(x) +∇f(x)T (y − x) +
1

2

(
(y − x)THf (z)(y − x)

)
If Hf (z) is positive semi-definite, this necessarily implies that:

f(y) ≥ f(x) +∇f(x)T (y − x)

and from Lemma 2 we get that f is convex.

2. if Hf (x) is positive definite, we have that:

f(y) > f(x) +∇f(x)T (y − x).

Applying the same idea as in Lemma 2 we can show that in this case f is strictly convex.
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3. Let f be a convex function and assume S is open. For x ∈ S, and some small λ > 0, for any
d ∈ Rn we have that x + λd ∈ S. From the Taylor expansion of f we get:

f(x + λd) = f(x) + λ∇f(x)Td +
λ2

2
dTHf (x)d + o(||λd||2)

From Lemma 2 we get that if f is convex then:

f(x + λd) ≥ f(x) + λ∇f(x)Td.

Therefore, we have that for any d ∈ Rn:

λ2

2
dTHf (x)d + o(||λd||2) ≥ 0

Dividing by λ2 and taking λ→ 0+ gives us that for any d ∈ Rn: dTHf (x)d ≥ 0.

Remark 10. It is important to note that if S is open and f is strongly convex, then Hf (x) is still
(only) positive semi-definite ∀x ∈ S. Consider f(x) = x4 which is strongly convex, then the Hessian
is Hf (x) = 12x2 which equals 0 at x = 0.
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