
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 3 — February 1st

1 Overview

In our previous lecture we presented fundamental results from convex analysis and in particular
the separating hyperplane theorem. Today, we will begin the first part (out of a total of three) of
our course. We will start will linear optimization, which is a special case of convex optimization
(every linear function is convex). Linear functions are often easier to think about, yet they are
nonetheless a potent modeling tool – many interesting problems can be modeled in terms of linear
optimization. Later in the course we will see how to generalize the main concepts we develop in
linear optimization to convex optimization. Let’s start.

2 Linear Optimization

In linear optimization we seek to solve an optimization problem:

max f(x)

s.t. g1(x) ≤ b1
.

.

.

gm(x) ≤ bm

where the functions f and g1, . . . , gm are all linear. Recall that a function is linear if it can be
expressed as:

f(x) = cᵀx + b = c1x1 + . . . cdxd + b

For convenience we will represent linear functions as f(x) = cᵀx (i.e. without the b term): given
x ∈ Rd we can transform x to a vector in Rd+1 as x′ = (x, 1) and for any given c = (c1, . . . , cd) and
b ∈ R we can instead consider c′ = (c1, . . . , cd, b), and thus f(x) = cᵀx + b = c′ᵀx′.
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General representation of linear programs. In general a linear optimization problem is a
problem where there exist M1,M2,M3, N1, N2 and vectors c, a1, . . . , an s.t. the problem is:

min cᵀx

s.t. aᵀ
i x ≥ bi, i ∈M1

aᵀ
i x ≤ bi, i ∈M2

aᵀ
i x = bi, i ∈M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

Equivalent forms of LPs. We can always represent any linear program as:

min cᵀx

s.t. Ax = b

x ≥ 0

The above formulation is called standard form and it is a standard way to represent linear programs.
Any linear function optimization under linear constraints can be represented in this way using the
following conversion rules:

1. max cᵀx ⇐⇒ −min−cᵀx

2. aᵀx ≥ b ⇐⇒ −aᵀx ≤ −b

3. aᵀx = b ⇐⇒ aᵀx ≤ b ∧ aᵀx ≥ b

4. aᵀx + s = b, s ≥ 0 ⇐⇒ aᵀx ≤ b

5. aᵀx− e = b, e ≥ 0 ⇐⇒ aᵀx ≥ b

2.1 Examples of Linear Programs

Stock portfolio optimization. Suppose there are n companies s1, . . . , sn each company si has
expected net worth of ci (buying the stocks of the entire company would cost ci dollars) and
investing in the company has expected profit of wi. Suppose we have a budget B and would like
to use the budget to buy stocks in a matter that maximizes our expected profit:

max

n∑
i=1

wi · xi

s.t.

n∑
i=1

ci · xi ≤ B

xi ≥ 0, ∀i ∈ [n]

xi ≤ 1, ∀i ∈ [n]
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Data fitting. Suppose we are given m data points (x1, y1), . . . , (xm, ym) and we wish to construct
a predictive model. In the first lecture we discussed the residual sum of squares objective, but there
are other similar objectives one may wish to consider. One option is to minimize the `∞ norm:

min max
i
|yi − aᵀxi|

This can be modeled as a linear optimization problem by adding a variable z that captures the
value of the absolute difference:

min z

s.t. yi − aᵀx ≤ z ∀i = 1, . . .m

−yi + aᵀx ≤ z ∀i = 1, . . .m

Another reasonable objective is to minimize the `1 norm:

min
m∑
i=1

|yi − aᵀxi|

This can also be modeled as a linear optimization problem:

min
m∑
i=1

zi

s.t. yi − aᵀx ≤ zi ∀i = 1, . . .m

−yi + aᵀx ≤ zi ∀i = 1, . . .m

Linear Classification. Finally, we can also consider the problem of linear classification from the
previous lecture as a linear optimization problem. To see this, recall that the challenge was to find
a separating hyperplane, i.e. given points {(xi, yi)}mi=1 where xi ∈ Rd and yi ∈ {0, 1} our goal is to
find a ∈ Rd and α ∈ R s.t. aᵀx ≥ α ⇐⇒ yi = 1. We can actually encode this as the constraints
of the linear program, and use some arbitrary objective function:

min 221 · a2016
s.t. aᵀxi ≥ ad+1 ∀i : yi = 1

aᵀxi ≤ ad+1 ∀i : yi = 0

Here ad+1 encodes the constant α and the objective min 221 · a2016 is arbitrary (the implicit as-
sumption is that d+ 1 ≥ 2016). Notice that the constraint

aᵀxi ≥ ad+1 ∀i : yi = 1

is shorthand for stating that in the constraint matrix there are k vectors aᵀxi ≥ ad+1 for all the
xis for which yi = 1, where k ≤ m is the number of data points whose label is yi = 1. What is
interesting here is that we are not interested in optimizing the objective, but rather in finding a
feasible solution.
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CPI CTR Conversions Traffic

Site A $0.01 0.02 0.003 4,000,000
Site B $0.01 0.01 0.002 ∞
Budget 80k 100k - -

Table 1: Marketing performance data table. The first column shows that advertising on each site has a Cost Per
Impression (CPI) of 1 cent. The budget allocated for the campaign is $80,000. The second column shows the Click
Through Rate (CTR) on each site. The CTR is the ratio between the number of people who see the ad and the
number who click on it. The retailer is willing to spend 100,000 coupons on this campaign, in expectation. The third
column shows the conversion rate on each site: the ratio between number of people who are shown the ad and those
who end up making a purchase. The last column shows the traffic: the number of people who visit the site in the
time period which we intend to run the campaign.

3 Example: budget allocation in online advertising

Let’s do a simple example to be convinced that linear optimization is interesting and useful to
explore. An online advertising agency wishes to optimize conversions (sales) for an online retailer
which wishes to advertise a product. The campaign involves placing display ads over two sites, and
giving a coupon to every person who clicks on the ad. The retailer is interested in maximizing the
number of conversions. Table 1 summarizes data typically collected from such experiments.

We can now write the linear program:

max (3x1 + 2x2) · 10−3 (1)

s.t. x1 + x2 ≤ 8 · 106 (2)

2x1 + x2 ≤ 10 · 106 (3)

x1 ≤ 4 · 106 (4)

Let’s begin by examining a few heuristic solutions and see how well they do.

• Heuristic 1: Buy as many impressions on site A until exhausting traffic, and
spend the rest on site B. In this case we will buy 4 · 106 impressions on site A and 2 · 106

impressions on site B. The number of conversions in this case is 16, 000.

• Heuristic 2: Spend all budget on site B. In this case we will buy 8 · 106 impressions and
the number of conversions in this case too will be 16, 000.

• Heuristic 3: Split budget between A and B in some arbitrary way. If we chose
2 · 106 impression on site A, and 6 · 106 impressions on B, the expected number of conversions
will be 18, 000.

So, even in two dimensions, it’s not obvious how to find an optimal solution. To get a better
understanding of what solutions to LPs look like, we will need to look at the geometry of LPs. In
the figure below we plot the constraints. Note that a solution is a point inside the region defined
by the intersection of all these constraints.
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