
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 14 — March 21st

1 Overview

In the previous lectures we presented the concept of duality for convex programs. In this lecture
we discuss duality gaps, complementary slackness, and the Karush-Kuhn-Tucker conditions that
provide us necessary and sufficient conditions for strong duality of convex programs.

2 Recap

In this lecture we will continue using the same concepts as we did in lecture 12.

• We will consider the primal constrained optimization problem (primal for short):

min f(x)
s.t. gi(x) ≤ 0 ∀i ∈ [m]

hj(x) = 0 ∀j ∈ [p]

• The Lagrangian associated with the primal optimization problem is:

L(x, λ, ν) = f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

νihi(x)

The variables λ1, . . . , λm and ν1, . . . , νp are called the Lagrangian multipliers.

• The Lagrangian dual function is:

F (λ, ν) = inf
x
L(x, λ, ν)

• The Dual optimization problem (dual for short) is:

max F (λ, ν)

s.t. λ ≥ 0

• For every optimization problem weak duality holds, i.e. if α? is the value of the optimal
solution for the primal problem, and β? be the value of the optimal solution for the dual
problem, then: β? ≤ α?.

• When α? = β? we say that strong duality holds. Strong duality does not always hold, but
there are some conditions that do guarantee this property. In lecture 12 we saw that Slater’s
conditions guarantee strong duality.
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3 Duality Gap

In some cases, computing the optimal solution for the dual problem is in fact easier than computing
the optimal solution to the primal problem. Using α? to denote the value of the optimal solution to
the primal problem and β? to denote the value of the optimal solution to dual problem, we know
from weak duality that α? ≥ β?. Thus, any feasible solution to the dual problem is a lower bound
on the optimal solution. Furthermore, a point that is dual feasible enables us to bound how far
away a solution is from optimal. If x is primal feasible and (λ, ν) is dual feasible then:

f(x)− α? ≤ f(x)− F (λ, ν)

And thus if f(x)−F (λ, ν) ≤ ε, this implies that the solution x is at most ε away from optimal. We
refer to this gap as the duality gap.

Definition. For an optimization problem with objective f : Rn → R and dual F : Rm×Rp → R,
let x be primal feasible and (λ, ν) be dual feasible. The duality gap is defined as:

f(x)− F (λ, ν)

If the duality gap is zero then we have strong duality. The useful property here is that if we have an
algorithm that produces a series of primal and dual points, {x(i), (λ(i), ν(i))}ti=1 and we know that
for some k ∈ [t] the duality gap is smaller than some ε > 0, we can use x(k) as our solution and be
guaranteed that we’re at most ε away from the optimal solution.

4 Complementary Slackness

The following claim will be useful for proving necessary and sufficient conditions for strong duality
in the next section.

Claim 1. Let x? ∈ Rn be primal optimal and (λ?, ν?) ∈ Rm×Rp be dual optimal, and suppose that
strong duality holds. Then:

• x? ∈ argminx L(x, λ
?, ν?);

• λ?i gi(x?) = 0, ∀i ∈ [m].

Proof.

f(x?) = F (λ?, ν?) (1)

= inf
x

f(x) + ∑
i∈[m]

λ?i gi(x) +
∑
i∈[p]

ν?i hi(x)

 (2)

≤ f(x?) +
∑
i∈[m]

λ?i gi(x
?) +

∑
i∈[p]

ν?i hi(x
?) (3)

≤ f(x?) (4)
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Equality (1) holds due to strong duality, and (3) is simply by definition of the Lagrangian dual
function. By minimality of the infimum, we have inequality (3), and inequality (4) is due to the
fact that x? is primal feasible, thus hi(x?) = 0 for all i ∈ [p], and since λ? is dual feasible we know
that λ?i ≥ 0 for all i ∈ [m].

Since the left-hand side and the right hand side of the chain of inequalities are equal, we have that
the inequalities (3) and (4) are actually an equalities. This proves the two points of our claim.

The second point in the above claim is known as complementary slackness. For any optimal x? and
dual optimal (λ?, ν?) when strong duality holds complementary slackness is the condition which
states that:

• λ?i > 0 =⇒ gi(x
?) = 0;

• gi(x?) < 0 =⇒ λ?i = 0.

5 KKT Conditions for Strong Duality

We now state the Karush-Kuhn-Tucker (KKT) conditions. These are conditions on the properties
of primal and dual feasible points that are on the one hand necessary whenever strong duality holds,
and other other hand these conditions guarantee strong duality for convex optimization problems.

Definition. Given a primal optimization problem, we say that the points x? ∈ Rn and (λ?, ν?) ∈
Rm × Rp respect the Karush-Kuhn-Tucker (KKT) conditions if:

gi(x
?) ≤ 0, ∀i ∈ [m] (5)

hi(x
?) = 0, ∀i ∈ [p] (6)
λ?i ≥ 0, ∀i ∈ [m] (7)

λ?i gi(x
?) = 0, i ∈ [m] (8)

∇f(x?) +
m∑
i=1

λ?i∇gi(x?) +

p∑
i=1

ν?∇hi(x?) = 0 (9)

Theorem 2. For any optimization problem, if strong duality holds then any primal optimal solution
x? ∈ Rn and dual optimal solution (λ?, ν?) ∈ Rm × Rp respect the KKT conditions. Conversely, if
f and gi are convex for all i ∈ [m] and hi are affine for all i ∈ [p] then the KKT conditions are
sufficient for strong duality.

Proof. We will show that the KKT conditions are both necessary and sufficient.

Necessary conditions: Assume that strong duality holds and that x?, (λ?, ν?) are primal and
dual optimal, respectively. Since the x? is primal feasible it must be that conditions (5) and (6)
hold. Since (λ?, ν?) is dual feasible it must be that Condition (7) holds. By Claim 1 we know that
Condition (8) must hold. By Claim 1 we know that x? ∈ argminx L(x, λ

?, ν?). The gradient must
therefore vanish at x? and thus we get Condition 9.
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Sufficient conditions: Conditions (5) and (6) indicate that problem is primal feasible. Condi-
tion (7) together with the fact that f and gi are convex, for all i ∈ [m] and hi are affine for all
i ∈ [p], implies that

L(x, λ?, ν?) = f(x) +
∑
i∈[m]

λ?gi(x) +
∑
i∈[p]

ν?hi(x)

is a convex function. Since the function is convex, the fact that by Condition (9) the gradient
vanishes at x? implies that x? is a global minimum. Thus:

F (λ?, ν?) = L(x?, λ?, ν?)

= f(x?) +
∑
i∈[m]

λ?i gi(x) +
∑
i∈[p]

ν?i hi(x)

= f(x?)

where the last line is due to the fact that both hi(x
?) = 0 for all i ∈ [p] and λ?i gi(x) = 0 for all

i ∈ [m]. Since by weak duality we know that for any λ, ν we have that F (λ, ν) ≤ infx f(x), the
above equality indicates that we have strong duality.

6 Discussion and Further Reading

This lecture is based on Chapter 5 from [1]. For more examples, applications, and interpretations
of duality see Chapter 5 in [1].
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