
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 13 — March 9th

1 Overview

Today’s lecture will be about one of the most famous classification technique in machine learning:
Support Vector Machines (SVMs). The goal is to learn how to apply the theory of Lagrangian
duality to a concrete problem.

2 Classification Problems

In a classification problem, the statistician is given a sample of correctly classified data: {(x1, y1), . . . , (xn, yn)}.
For each data point i, xi ∈ Rd is the vector of features and yi ∈ K is the class of the data point.
Rd is called the feature space and K is the finite set of classes.

When |K| = 2, we write K = {−1,+1}. This is a two-class classification problem, and the goal of
the statistician is to learn from the sample a discriminant function f : Rd → R such that:{

f(xi) > 0 if yi = +1

f(xi) < 0 if yi = −1
(1)

Such a function can be used in the following way: given a new feature vector x ∈ Rd of unknown
class, compute f(x). If it is positive, predict class +1, otherwise predict class −1.

2.1 Linear Discrimination

The problem described above is very broad since we don’t require anything from the function f . It
is common to restrict the function f to a reasonably-sized class of functions. One such restriction
is affine functions.

If we require f to be an affine function, the problem described in (1) is now equivalent to finding
a ∈ Rd and b ∈ R such that: {

〈a, xi〉+ b > 0 if yi = +1

〈a, xi〉+ b < 0 if yi = −1
(2)

Geometrically, this means that we are looking for a hyperplane H = {x | 〈a, x〉+ b = 0} such that
the data points in class +1 lie in the positive half-space defined by this hyperplane, while the data
points in class −1 lie in its negative half-space.
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Figure 1: A linear discriminant is a hyperplane separating the feature vectors of class +1 (red dots)
from the feature vectors in class −1 (blue dots). Proposition 2 states that it is possible to find such
a hyperplane if and only if the convex hulls of the vectors of each class do not intersect.

Remark 1. It is useful to note that the set of linear inequalities (2) is equivalent to:{
〈a, xi〉+ b ≥ 1 if yi = +1

〈a, xi〉+ b ≤ −1 if yi = −1
(3)

Indeed, any (a, b) which satisfy (3) satisfies (2). Conversely, given (a, b) satisfying (2), we see that if
we multiply the inequalities in (2) by some positive constant c large enough, then (a′, b′) := (ca, cb)
will satisfy (3).

3 Support Vector Machines

3.1 Separability

The first question one might ask is whether or not the set of inequalities in (3) is feasible, i.e.
whether or not there exists a hyperplane separating the points in class −1 from those in class +1.

Let us define I = {i | yi = +1} the set of data points in class +1 and similarly J = {j | yj = −1} the
data points in class −1. The linear inequalities in (3) can be rewritten in matrix form as XA ≥ U ,
where X is the n× (d+ 1) matrix whose i-th row is [xTi 1] if i ∈ I and [−xTi − 1] if i ∈ J , A is the
concatenation of a and b, and U is the vector whose components are all one.

Then, by Farkas’ lemma, if (3) is not feasible, i.e. if there does not exist A such that XA ≥ U ,
then there exists Y such that Y TX = 0, Y TU > 0 and Y ≥ 0. Let us write Yi = λi when i ∈ I and
Yj = µj when j ∈ J (note that (I, J) is a partition of {1, . . . , n}). Then Y ≥ 0 implies that λ ≥ 0
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and µ ≥ 0. And the conditions Y TU = 0 and Y TU > 0 imply:∑
i∈I

λixi =
∑
j∈J

µjxj (4)

∑
i∈I

λi =
∑
j∈J

µj (5)

∑
i∈I

λi +
∑
j∈J

µj > 0 (6)

Equation (6) as well as λ ≥ 0 and µ ≥ 0 imply that λ 6= 0 and µ 6= 0. Hence we can define:

λ′i =
λi∑
i∈I λi

and µ′j =
µj∑
j∈J µj

Finally, dividing (4) both sides by
∑

i∈I λi and using (5), we obtain:∑
i∈I

λ′ixi =
∑
j∈J

µ′jxj (7)

Note that
∑

i∈I λ
′
i =

∑
j∈J µ

′
j = 1 and recall that the convex hull C of k vectors z1, . . . , zk of Rd,

the smallest convex set containing the k vectors can be written:

C =

{
k∑
i=1

λixi | λ ≥ 0 and
k∑
i=1

λi = 1

}

As a consequence, the existence of λ′ and µ′ satisfying (7) is exactly equivalent to saying that the
convex hulls of {xi, i ∈ I} and {xj , j ∈ J} intersect. We have now proved:

Proposition 2. The set of linear inequalities in (3) is feasible if and only if the convex hulls of
{xi, i ∈ I} and {xj , j ∈ J} do not intersect.

3.2 Robust Separation

From now on, we will assume that the condition of Proposition 2 is satisfied, so that we can find a
hyperplane separating our data points. We note that the existence of one such hyperplane in fact
implies the existence of infinitely many such hyperplanes and we need to decide on a criterion to
select one which will be a “good” discriminant for our classification task.

Note that a separating hyperplane satisfying (3) defines a region of the space which contains no
data points: M = {x | − 1 ≤ 〈a, x〉 + b ≤ 1}. This region is contained between the two parallel
hyperplanes {x | 〈a, x〉+ b = −1} and {x | 〈a, x〉+ b = +1} and is called the classification margin.
We define its width to be the distance between the two boundary hyperplanes. You showed in your
second assignment that this distance is equal to 2

‖a‖ .

This provides a criterion to select a “good” separating hyperplane: select a hyperplane which sepa-
rates the data points the most, i.e. for which the width of the margin is maximal. Such a hyperplane
is called a maximum margin hyperplane. Formally the optimization problem can be written:
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max
a,b

2

‖a‖
(8)

s.t. 〈a, xi〉+ b ≥ 1, i ∈ I (9)
〈a, xj〉+ b ≤ −1, j ∈ J (10)

Equivalently we could minimize the quantity ‖a‖
2 or its squared ‖a‖2

4 . This leads to the following
convex optimization problem in standard form:

min
a,b

‖a‖2

4
(11)

s.t. 〈a, xi〉+ b ≥ 1, i ∈ I (12)
〈a, xj〉+ b ≤ −1, j ∈ J (13)

3.3 Computing the Dual

We will now see how to compute the dual of Problem (11). We start by forming the Lagrangian of
the problem:

L(a, b, λ, µ) =
‖a‖2

4
+
∑
i∈I

λi
(
1− 〈a, xi〉 − b

)
+
∑
j∈J

µj
(
〈a, xj〉+ b+ 1

)
where λ and µ are the dual variables and are positive vectors of R|I| and R|J | respectively. By
reordering the terms we get:

L(a, b, λ, µ) =
‖a‖2

4
+

〈
a,
∑
j∈J

µjxj −
∑
i∈I

λixi

〉
+

〈
b,
∑
j∈J

µj −
∑
i∈I

λi

〉
+
∑
i∈I

λi +
∑
j∈J

µj

We can now compute the dual function F (λ, µ) = mina,b L(a, b, λ, µ). First, taking the derivate of
L with respect to a and b, we see that the critical points of L as a function of its first two variables
verify:

a

2
+
∑
j∈J

µjxj −
∑
i∈I

λixi = 0 (14)

∑
j∈J

µj −
∑
i∈I

λi = 0 (15)

As a consequence, if (15) is satisfied, then a critical point exists, and since L(a, b, λ, µ) is convex in
(a, b) the critical point is a global minimum. The value of a at the critical point is given by (14)
and plugging it in the definition of the Lagrangian, we obtain:

F (λ, µ) = −
∥∥∥∥∑
i∈I

λixi −
∑
j∈J

µjxj

∥∥∥∥2 +∑
i∈I

λi +
∑
j∈J

µj
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If (15) is not satisfied, then it is easy to see that the minimum of F (λ, µ) = −∞. Indeed, in this case
one can simply let a = 0 and observe that

〈
b,
∑

j∈J µj −
∑

i∈I λi

〉
converges to −∞ as b converges

to ∞ or −∞.

The dual of Problem (11) is simply maximizing the dual function F over λ ≥ 0 and µ ≥ 0. It is
sufficient to restrict the domain to λ and µ satisfying (15) (otherwise the dual function is equal to
−∞ and clearly not maximum). Hence, the dual problem can be written:

max
λ,µ
−
∥∥∥∥∑
i∈I

λixi −
∑
j∈J

µjxj

∥∥∥∥2 +∑
i∈I

λi +
∑
j∈J

µj (16)

s.t.
∑
i∈I

λi =
∑
j∈J

µj (17)

λ ≥ 0, µ ≥ 0 (18)

It is possible to further simplify this problem by parametrizing it in terms of s =
∑

i∈I λi =
∑

j∈J µj ,
λ′ = λ

s and µ′ = µ
s :

max
λ′,µ′,s

− s2
∥∥∥∥∑
i∈I

λ′ixi −
∑
j∈J

µ′jxj

∥∥∥∥2 + 2s (19)

s.t.
∑
i∈I

λ′i =
∑
j∈J

µ′j = 1 (20)

λ′ ≥ 0, µ′ ≥ 0, s ≥ 0 (21)

The maximum in s is clearly attained when:

s =
1∥∥∑

i∈I λ
′
ixi −

∑
j∈J µ

′
jxj
∥∥2

and one can finally write the dual problem of (11):

max
λ′,µ′

1∥∥∑
i∈I λ

′
ixi −

∑
j∈J µ

′
jxj
∥∥2 (22)

s.t.
∑
i∈I

λ′i =
∑
j∈J

µ′j = 1 (23)

λ′ ≥ 0, µ′ ≥ 0 (24)

3.4 Strong Duality

It is not hard to see that whenever the condition of Proposition 2 holds, then the set of inequalities
in (3) are also strictly feasible: that is, they are still feasible by replacing the inequalities by strict
inequalities. In other words, Slater’s condition holds and we have strong duality: the optimum value
of (22) is equal to the optimum value of (11). By taking the inverse square root both sides, we can
rewrite this in terms of the original problem (8):

max
a,b

2

‖a‖
s.t. 〈a, xi〉+ b ≥ 1, i ∈ I
〈a, xj〉+ b ≤ −1, j ∈ J

= min
λ′,µ′

∥∥∥∑i∈I λ
′
ixi −

∑
j∈J µ

′
jxj

∥∥∥
s.t.

∑
i∈I λ

′
i =

∑
j∈J µ

′
j = 1

λ′ ≥ 0, µ′ ≥ 0

(25)

5



The geometric interpretation of equation (25) is the following: the problem on the right-hand side
consists in finding the minimum distance between one point in the convex hull of (xi)i∈I and one
point in the convex hull of (xj)j∈J . Strong duality implies that this minimum distance is equal to
the margin of a maximum-margin hyperplane.

Figure 2: The maximum margin hyperplane (solid) is orthogonal to the vector joining the two
closest vectors in the convex hulls of the red dots and the blue dots. These two vectors lie on the
hyperplanes at the boundary of the margin (dashed lines).
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