
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer (lightly edited by R.K.) Lecture 12 — March 9th

1 Overview

In the previous lectures, we studied unconstrained convex optimization. In this lecture we will begin
our discussion about constrained optimization, and in particular introduce Lagrangian multipliers
and Lagrangian duality. In general, strong duality does not always hold, but we will introduce
Slater’s condition which guarantees strong duality holds.

2 Convex Optimization under Constraints

Consider the following problem of minimizing x+y s.t. x2+y2 ≤ 1. How should we go about solving
this problem? In our discussions thus far we dealt with linear optimization under linear constraints
(or problems that can be reduced to that, such as piecewise linear functions), or convex optimization
where there we no constraints. This problem involves minimizing a linear (and hence convex)
function under convex constraints. Note that the set of feasible points (x, y) where x2 + y2 ≤ 1 is
convex. For this particular problem, the constraint will be active for an optimal solution, so in fact
x2 + y2 = 1 for optimal points.

For the problem above we know that x+y is both convex and concave and therefore, if there hadn’t
been any constraints the stationary point (x, y) for which ∇f(x, y) = 0 would be an optimum.
But we somehow need to understand how we can make sure the constraint x2 + y2 = 1 is met, or
equivalently x2 + y2 − 1 = 0. One way of doing this is to consider the problem of optimizing the
unconstrained function, using λ > 0:

L(x, y, λ) = x+ y + λ(x2 + y2 − 1)

For now, let’s find a stationary point ∇L(x, y, λ) = 0 and see what we can obtain. In this case:

∇L =

 ∂L
∂x
∂L
∂y
∂L
∂λ

 =

 1 + 2λx
1 + 2λy

x2 + y2 − 1


Solving for ∇L(x, y, λ) = (0, 0, 0, ), from the first two equations we get that as long as λ 6= 0 we
have that x = y = − 1

2λ , and substituting x and y into the last equation we get that λ = 1√
2
,− 1√

2
.

Therefore the stationary points are points are (
√
2
2 ,
√
2
2 ) and (−

√
2
2 ,−

√
2
2 ).

2.1 Lagrangian Multipliers

The above exercise was an example of using Lagrange multipliers.
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Definition. Given the optimization problem:

min f(x)

s.t. gi(x) ≤ 0 ∀i ∈ [m]

hj(x) = 0 ∀j ∈ [p]

The Lagrangian associated with the optimization problem is:

minL(x, λ, ν) = f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

νihi(x)

The variables λ1, . . . , λm and ν1, . . . , νp are called the Lagrangian multipliers.

Example: least squares. Consider the following program:

min xᵀx

s.t. Ax = b

where A ∈ Rp×n. There are no inequality constraints, and p linear equality constraints. The
Lagrangian here is:

L(x, ν) = xᵀx + νᵀ(Aᵀx− b).

Example: linear optimization. Consider a linear program:

min cᵀx

s.t. Ax = b

x ≥ 0

In this case the Lagrangian is:

L(x, ν) = cᵀx− λᵀx + νᵀ(Aᵀx− b) = −bᵀν + (c +Aᵀν − λ)ᵀx

2.2 Lagrangian duality

When we discussed linear optimization, we saw that the concept of duality was quite powerful, and
eventually enabled us to solve linear optimization problems efficiently. In convex optimization we
have a generalization of this idea, called Lagrangian duality. For an objective L as the one stated
above, the dual function is defined as follows.

Definition. Given a Lagrangian L(x, λ, ν) of some optimization problem over domain D, the
Lagrangian dual is the function:

F (λ, ν) = inf
x∈D

L(x, λ, ν).
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Example: Lagrangian duality of least squares. The Lagrangian dual function is:

F (ν) = inf
x
L(x, ν) = inf

x
{xᵀx + νᵀ(Ax− b)}

Here the Lagrangian is convex in x, and we can therefore find its infimum via a stationary point:

∇xL(x, ν) = 2x + νᵀA

the stationary point is:

∇xL(x, λ, ν) = 0

⇐⇒ 2x + νᵀA = 0

⇐⇒ x = −1

2
νᵀA

The Lagrangian dual is:

F (ν) = inf
x
L(x, ν) = L

(
−1

2
νᵀA, ν

)
=

1

4
νᵀAAᵀν − 1

2
νᵀAAᵀν − νᵀb = −1

4
νᵀAAᵀν − νᵀb

Example: Largrangian duality of linear optimization. The Lagrangian dual function is:

F (λ, ν) = inf
x
L(x, λ, ν) = inf

x
{−bᵀν + (c +Aᵀν − λ)ᵀx} = −bᵀν + inf

x
{(c +Aᵀν − λ)ᵀx}

Since the function (c + Aᵀν − λ)ᵀx is linear, it is bounded from below only when it is identically
zero. Thus:

F (λ, ν) =

{
−bᵀν c +Aᵀν − λ = 0

−∞ otherwise

If we replace ν with −y we get:

F (λ, ν) =

{
bᵀy Aᵀy ≤ c

−∞ otherwise

Maximizing the Lagrangian dual function thus translates to the following optimization problem:

max bᵀy

s.t. Aᵀy ≤ c

which is the dual problem of the linear program.

3 The Dual Optimization Problem

Definition. The constrained optimization problem:

min f(x)

s.t. gi(x) ≤ 0 ∀i ∈ [m]

hj(x) = 0 ∀j ∈ [p]

will henceforth be referred to as the primal optimization problem.
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Definition. Given a primal optimization problem, the dual optimization problem is:

max F (λ, ν)

s.t.λ ≥ 0

where F (λ, ν) is the Lagrangian dual function associated with the function f above.

4 Weak Duality

From here on we will frequently use α? to denote the value of the optimal solution for the primal
problem, and β? to denote the optimal solution for the dual problem.

Theorem 1. Let α? be the value of the optimal solution for the primal problem, and β? be the value
of the optimal solution for the dual problem. Then: β? ≤ α?.

Proof. Let D denote the feasible region of the primal problem.

F (λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

νihi(x)
)

For any feasible point x ∈ D we have that gi(x) ≤ 0, for all i ∈ [m], and hi(x) = 0, for all i ∈ [p].
Since λi are all nonnegative, we have that:

f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

νihi(x) ≤ f(x)

Since this holds for all λ, ν, in particular it holds for the dual optimal values (λ?, ν?), i.e. the values
for which F (λ?, ν?) = maxλ,ν F (λ, ν) = β?. Thus:

β? = inf
x∈D

L(x, λ?, ν?) ≤ inf
x∈D

f(x) = α?.

5 Slater’s Condition and Strong Duality

In linear optimization we proved that we always have strong duality. That is, when the functions
and constraints are linear we know that α? = β?. For general optimization problems this is not
necessarily the case. In this lecture and the lecture following next we will discuss conditions under
which strong duality holds. The condition we will discuss today is called Slater’s condition.

Definition. For a primal optimization problem, we say that it respects Slater’s condition if
the objective function f is convex, the constraint functions {gi}mi=1 are convex, the constraint
functions {hj}pj=1 are linear, and there exists a point x̄ in the interior of the region, i.e.

1. x̄ ∈ D and x is not in the boundary of D (a small ball around x̄ is also in D).

2. gi(x̄) < 0 for all i ∈ [m],

3. hj(x̄) = 0 for all j ∈ [p].
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Theorem 2. Suppose that Slater’s condition hold and the region has a non-empty interior. Then,
we have strong duality.

Before proving the theorem, we will prove the following lemma.

Lemma 3. Let α? be the value of the optimal solution for the primal problem and define the sets:

• A = {(u,v,t) ∈ Rm × Rp × R : ∃x ∈ D, gi(x) ≤ ui ∀i ∈ [m], hj(x) = vj ∀j ∈ [p], f(x) ≤ t}

• B = {(0,0,s) ∈ Rm × Rp × R : s < α? }

Then the sets are convex and A ∩ B = ∅.

Proof. Verifying that these sets are convex follows from their definition. To see that A and B do
not intersect, assume for purpose of contradiction that there exists a point in A∩B. Since the point
is in A there exists a point x′ s.t. the gi(x′) ≤ ui and hj(x′) ≤ vj for all i ∈ [m] and j ∈ [p]. Since
the point is also in B it must be the case that ui, vj = 0 for all i ∈ [m] and j ∈ [p]. Thus, x′ is
feasible. The fact that the point is in B implies that f(x′) < α?. But since α? is the minimal value
obtained by a feasible point, this is a contradiction.

Proof of strong duality under Slater’s condition. Without loss of generality assume that the rank
of A is p and that the primal objective is finite (otherwise α? = −∞ and then by weak duality
β? = −∞). Since A and B are convex and do not intersect we can apply the separating hyperplane
theorem. In this case this implies that there exists a point (λ̃, ν̃, µ̃) 6= 0 and value α s.t.:

• (u,v,t) ∈ A =⇒ λ̃ᵀu + ν̃ᵀv + µ̃t ≥ α

• (u,v,t) ∈ B =⇒ λ̃ᵀu + ν̃ᵀv + µ̃t ≤ α

Since α is a lower bound on λ̃ᵀu+ ν̃ᵀv+ µ̃t for points (u,v, t) ∈ A we can conclude that λ̃ ≥ 0 and
µ̃ ≥ 0 as otherwise we have that as (u′,v, t′) ∈ A for any u′ ≥ u and t′ ≥ t, that λ̃ᵀu + ν̃ᵀv + µ̃t
can be made arbitrarily small (goes to −∞), and this contradicts the lower bound of α. Since the
points in B are those for which u = 0 and v = 0, the fact that α is an upper bound on λ̃ᵀu + ν̃ᵀv
for points (u,v, t) ∈ B implies that µ̃t ≤ α for all t < α?, and thus µ̃α? ≤ α. Together we get that
for any x in our domain:

m∑
i=1

λ̃igi(x) + ν̃ᵀ (Ax− b) + µ̃f(x) ≥ α ≥ µ̃α?

If µ̃ > 0 we can simply divide by µ̃ and get that:

L(x, λ̃/µ̃, ν̃/µ̃) =

m∑
i=1

λ̃i
µ̃
gi(x) +

(
ν̃

µ̃

)ᵀ

(Ax− b) + f(x) ≥ α?

In particular this also holds for the point that minimizes L(·, λ̃/µ̃, ν̃/µ̃):

x̄ ∈ arg inf
x
L(x, λ̃/µ̃, ν̃/µ̃) = F (λ̃/µ̃, ν̃/µ̃) ≤ β?
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Let λ = λ̃/µ̃ and ν = ν̃/µ̃. By weak duality we have F (λ, ν) ≤ α?, so in fact F (λ, ν) = α?. This
shows that strong duality holds, and that the dual optimum is attained, in the case when µ̃ > 0.

In the case that µ̃ = 0, the inequality derived from the departing hyperplane theorem implies:

m∑
i=1

λ̃igi(x) + ν̃ᵀ(Ax− b) ≥ 0 (1)

Consider the point x̃ which satisfies Slater’s condition. In this case since this point respects Ax̃ = b
we have that:

m∑
i=1

λ̃igi(x̃) ≥ 0

Since gi(x̃) ≤ 0 and λ̃i ≥ 0 for all i ∈ [m], this implies that λ̃ = 0. From (1) this now implies that
for all x we have:

ν̃ᵀ(Ax− b) ≥ 0

By the separating hyperplane theorem we know that (λ̃, ν̃, µ̃) 6= 0, and since λ̃ = 0 and µ̃ = 0 this
implies that ν̃ 6= 0. The point x̃ satisfies νᵀ(Ax̃ − b) = 0, and since x̃ is in the interior of D, we
know that there are points x for which ν̃ᵀ(Ax − b) < 0 unless Aᵀν = 0. But this contradicts our
assumption that A is of rank p.

6 Discussion and Further Reading

This lecture is based on Chapter 5 from [1]. For more examples, applications, and interpretations
of duality see Chapter 5 in [1].
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